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Abstract

This document contains lecture notes for a course titled ‘Introduction to Online Learning”
which I taught in Fall 2022. These notes borrow material from several sources. The refer-
ences for these notes are Hazan et al. [14], Orabona [24] Shalev-Shwartz et al. [30], Bubeck
[5], Bubeck et al. [6], Bubeck et al. [7], lecture notes in http://www.cs.cmu.edu/afs/
cs.cmu.edu/academic/class/15850-f20/www/notes/cmu850-f20.pdf and
lecture notes in https://haipeng-luo.net/courses/CSCI659/2022_fall/index.
html. Needless to say, there are several typos throughout these notes and the literature refer-
ences are not adequate. The focus was to explain some basic mathematical results in the field
and give a complete and simplified exposition of the proofs.

1 Introduction: What is Online Learning?

Online Learning is a different paradigm of learning compared to Statistical Learning Theory.

1.1 Statistical Learning Theory

One of the standard and thoroughly studied models for learning is the framework of statistical
learning theory. We start by briefly reviewing this model.

The basic protocol of statistical learning is the following:

1. Observe training data Z1, . . . , Zn which is assumed to be an i.i.d. sequence from an unknown
probability distribution P.

2. Make decision (or choose action) a(Z1, . . . , Zn) ∈ A where A is a given set of possible
actions.

3. Suffer an (average) loss EZ∼P l
(
a(Z1, . . . , Zn);Z) where l : A × Z → R+ is a given loss

function and Z is test data.

Objective: Minimize (and control) the excess risk:

rn = EZ∼P l
(
a(Z1; . . . , Zn);Z)− inf

a∈A
EZ∼P l

(
a;Z)

The excess risk represents how much extra (average) loss one suffers compared to the optimal
decision.

Controlling the excess risk means finding an upper bound on rn which holds either in expec-
tation or better, with high probability (with respect to the sequence Z1, . . . , Zn). Usually the upper
bound is expressed in terms of some complexity measure of A. Moreover if the upper bound de-
pends on P one says that it is a distribution-dependent bound, while if it is independent from P it is
distribution-free bound. This formulation is very general and encompasses many standard problems
such as regression/classification, density estimation etc.
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1.2 Online Learning

What if it is not appropriate to assume the data is i.i.d? Online Learning offers a different paradigm
for learning in the sense that it makes no (or very little) assumptions on the data sequence. Instead
we think of a learning/prediction problem as a repeated game. At each round t, we make a prediction
and then nature or an adversary generates the data and then we measure how good our prediction is
via a loss function.

At round t, the data Zt arrives. We can then take action at ∈ A. What could be a reasonable
notion of learning here? There is no probabilistic assumption on the data sequence Z1, . . . , ZT .

We could compare the total sequential risk to the sequential risk we would have achieved if we had
played the best action in hindsight, i.e, if the following term

T∑
t=1

l(at, Zt)− inf
a∈A

T∑
t=1

l(a, Zt)

grows slower than O(T ) for all possible data sequences then we can say that we are learning.

Let us write down the online optimization (OO) protocol more precisely. Suppose the game
goes on for T rounds. The learner has a set of actions to choose from a set A which we can call as
the action space. We can think of A ⊂ Rd. For any round t ∈ [T ],

1. The learner plays xt ∈ A.

2. Nature or Adversary reveals a loss function lt : A → R+.

3. Incur loss lt(xt).

While this protocol may seem a bit abstract at a first glance, this OO framework can capture a
wide variety of learning problems as we will see in a bit. Let us formalize the notion of an algorithm.

Definition 1.1. An online learning algorithm A = (A1, . . . , At) is a sequence of mappings xt =

At−1(l1, . . . , lt−1) for t = 1, . . . , T.

Now, the question arises as to how do we measure the goodness of an online algorithm? For
this, we can consider a notion of regret which is similar in flavor to the excess risk in statistical
learning theory.

Definition 1.2. For any fixed u ∈ A, we can define

RegretA(u) =
T∑
t=1

lt(xt)−
T∑
t=1

lt(u).

Regret measures the excess loss incurred by A as compared to playing a point u ∈ A every
round. An online learning algorithm is said to have the no regret property w.r.t A if

1

T
sup
u∈A

RegretA(u) =
1

T

T∑
t=1

lt(xt)− inf
u∈A

T∑
t=1

lt(u)→ 0

as T →∞.
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1.3 Comparisons

As one can see, distributional assumptions are built in the definition of statistical learning. On the
other hand, online learning does not necessarily assume that data is from some fixed distribution,
which makes it much more suitable for dealing with time-varying environments. In fact, even if the
data is entirely adversarial, which is indeed the case for applications such as spam detection, mean-
ingful and strong guarantees can still be derived for online learning as we will see soon. Another
key advantage is that online learning algorithms are usually more memory-efficient, in the sense
that they usually do not need to store data from the past. That is, at each round, the new data is used
to update the current states of the algorithm and then discarded. On the other hand, most statisti-
cal learning algorithms require storing the training set and touching each example multiple times.
Moreover, it can in fact be shown that online learning is strictly harder than statistical learning in
the sense that a full information online learning algorithm can be used to solve statistical learning.
We might come back to this later in the course.

1.4 Convexity

Within the Online Optimization (OO) framework, if we restrict the action space to be convex and
the loss functions to be convex, then we obtain the Online Convex Optimization framework. This
framework was introduced by Zinkevich [34].

1. The learner plays xt ∈ A where K ⊂ Rd is a convex set of all possible actions.

2. Nature or Adversary reveals a convex loss function lt : A → R+.

3. Incur loss lt(xt).

We can again consider regret of an online algorithm. The surprising fact is that no regret
algorithms exist within the OCO framework for essentially any bounded set K.

1.5 Things to Come

In this course we (among other things)

1. will study fundamental Online Learning Algorithms such as Online Gradient Descent (OGD),
Online Mirror Descent (OMD), Regularized Follow the Leader (RFTL) and analyze their
regret.

2. will mostly restrict ourselves to the OCO framework althougn non convex loss functions are
also of great interest.

3. see connections to other closely related fields such as Game Theory, Statistical Learning
Theory.
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4. Will study several variations of the OO framework including limited feedback versions as in
Multi Armed Bandits and other adaptive notions of regret.

1.6 Example Problems

A variety of problem settings fall under the OCO framework. Some examples are as follows.

1. Online Classification. At each time step the learner plays a classifier at ∈ A. Then nature or
an adversary plays (xt, yt) and the learner incurs a loss lt(at, (xt, yt)). For example, the class
of classifier functions could be based on hyperplanes, that is of the form I(βtx ≥ 0). In this
case, the action spaceA could be the Euclidean ball of radiusRwhereR is a tuning parameter
to be set by the learner. The natural loss function here is lt(βt, (xt, yt)) = I(sgn(βttxt) 6= y)

which is non convex. Typically, a convex loss function such as the hinge loss is used for
computational considerations.

2. Online Linear Regression. Similarly as above, if y is real valued, the natural loss function
here is the square loss. That is, lt(βt, (xt, yt)) = (βttxt−yt)2. A slightly modified protocol is
also sometimes appropriate here where the learner first observes xt and then makes a predic-
tion. It is then that the yt is revealed. The standard online learning algorithm in this setting is
what is called the Vovk Azoury Warmuth forecaster.

3. Prediction From Experts Advice

Perhaps the most well known problem in prediction theory is the experts problem. Suppose
we want to predict a binary outcome A or B; say whether it will rain tomorrow or not. There
are n experts who provide their predictions. Based on these predictions, the learner has to
make his/her own prediction. Then the true outcome is revealed and a loss of either 0 or 1

is incurred. This scenario is repeated iteratively, and at each iteration, the predictions of the
various experts are arbitrary (and possibly even adversarial, trying to mislead the decision
maker). The goal of the decision maker is to do as well as the best expert in hindsight.

As we will see in the next lecture, the OCO setting captures this problem as a special case too.
The action space is the set of all probability distributions over n elements (experts); that is, the
n-dimensional probability simplex. The loss function turns out to be linear functions on the
simplex. The fundamental importance of the experts problem in machine learning warrants
special attention, and we shall return to it and analyze it in detail from the next lecture.

4. Portfolio Selection In this section we consider a portfolio selection model that does not make
any statistical assumptions about the stock market (as opposed to the standard geometric
Brownian motion model for stock prices), and is called the universal portfolio selection”
model. At each iteration t ∈ [T ], the decision maker chooses a distribution of her wealth
over n assets xt. The adversary independently chooses market returns for the assets, i.e., a
vector rt with strictly positive entries such that each coordinate rt(i) is the price ratio for the

7



i’th asset between the iterations t and t + 1. The ratio between the wealth of the investor at
iterations t + 1 and t is Wt+1

Wt
= rttxt, and hence the gain in this setting is defined to be the

logarithm of this change ratio in wealth log(rttxt). Notice that since xt is the distribution of
the investor’s wealth, even if xt+1 = xt, the investor may still need to trade to adjust for price
changes. So in this case, the action space A is the probability simplex and the loss functions
are lt(x) = − log(rttx) which are convex.

Here regret minimization corresponds to maximizing

logWT+1 − logW1

as compared to the same quantity attained by the best benchmark from a pool of investing
strategies. A universal portfolio selection algorithm is defined to be one that, in this setting,
attains regret converging to zero. Historically, the first universal portfolio algorithm was given
by Tom Cover which was computationally efficient. We will come back to this setting a little
later in the course and see an efficient universal portfolio selection algorithm.

5. Online Matrix Completion and Recommendation Systems

Here at every time step we predict a matrix at of size m× n, the adversary reveals the i, j th
entry of an unknown true matrix M. Natural action space is the set of low rank matrices, say
rank bounded by some k ≥ 1. The loss can be the square loss. A typical convex relaxation of
this problem is to consider matrices with bounded trace norm rather than bounded rank.

6. Product Recommendation (Multi-Armed Bandits)

At each time t = 1, 2, . . . ,

• randomly recommend one of the K products a to a customer visiting the website;

• observe the loss of this product lt(a) (e.g. 0 if clicked, 1 otherwise), but not the losses
for the other products.

Here, I do not see the losses for all the actions and hence this is an example that falls under
the OCO framework but with limited feedback.

8



2 Prediction from Experts Advice

We consider a basic problem in online learning: how to choose dynamically among a set of experts
in a way that competes with the best expert in hindsight. This abstract problem and the techniques
behind the solution are important parts of the algorithm designer’s toolkit.

2.1 Mistake Bound Model

Consider the following setup: N experts make predictions about a binary outcome such as {rain, no rain}
in T rounds:

1. At the beginning of round t ∈ [T ], each expert makes a prediction which we can collect as a
vector E t ∈ {0, 1}N .

2. Learner makes prediction at and simultaneously, the actual outcome ot is revealed.

The goal of the leaner is to have an algorithm that can compete with the best expert in hindsight.

Suppose there is an expert that never makes mistakes, then what is the natural algorithm in this
case?

Fact: In this case there exists an algorithm which makes at most dlog2Ne mistakes. The
algorithm is to predict by majority. The first time the learner is wrong, more than half of the experts
are wrong, and they can be thrown out. Now the number of valid experts are reduced. The second
time the learner is wrong, more than half of the currently valid experts are wrong, and they can be
thrown out too. By repeating this procedure, the perfect expert can be found in at most dlog2Ne
steps.

This reasoning can be extended.

Exercise 2.1. In the case we do not have the perfect expert, show that there exists an algorithm
based on the above reasoning which makes O(m∗ lnN) mistakes, where m∗ is the number of mis-
takes made by the best expert.

We will now see more streamlined versions of majority algorithms.

2.2 Weighted Majority algorithm

The Weighted Majority (WM) algorithm of Littlestone and Warmuth [21] can be described as fol-
lows:

1. Assign a weight w(t)
i , i ∈ [N ], to each expert at each round.

2. Come up with at by majority.

9



3. Upon observing ot, update the weights:

w
(t+1)
i =

w
(t)
i ith expert is correct,

w
(t)
i /2 ith expert is wrong.

Theorem 2.2. The number of mistakes made by the WM algorithm is at most 2.41(mini∈[N ]Mi +

log2N) where Mi is the number of mistakes made by expert i. Moreover, if the weights are updated
by multiplying with 1− ε, 0 < ε < 1/2, instead of 1/2 when an expert is wrong, then the bound on
the number of mistakes becomes

2(1 + ε)Mi +O

(
lnN

ε

)
.

Remark 2.1. No deterministic algorithm can avoid the factor 2 compared to the best expert. The
reason is the following: consider the case where there are only two experts, one always predicts 0

and the other always predicts 1. Fix an algorithm, then there exists a “bad” sequence of outcomes
such that the algorithm is always wrong, i.e. it makes T mistakes. One of the experts in this
circumstance only make T/2 mistakes. This suggests the factor of 2 is inherent. Nonetheless,
if we make prediction by flipping a coin, then the rate of mistakes should be close to T/2. So
randomization should help getting rid of the factor of 2.

2.3 Randomized Weighted Majority algorithm

Let us consider the Randomized Weighted Majority (RWM) algorithm:

1. Assign a weight w(t)
i , i ∈ [N ], to each expert at each round. Pick expert i with probability

∝ w(t)
i .

2. Let it denote the expert chosen at round t. Predict at = E(it).

3. Upon observing ot, update the weights:

w
(t+1)
i =

w
(t)
i if ith expert is correct,

w
(t)
i (1− ε) if ith expert is wrong.

Theorem 2.3. Let M denote the number of mistakes made by RWM with parameter ε ∈ (0, 1/2).

Then we have the following expected mistake bound

E[M ] ≤ (1 + ε)Mi +
lnN

ε
, ∀i ∈ [N ].

Proof. (This is a potential based proof. The idea is to track the total sum of weights.) Define

S1 = N and St =

N∑
i=1

w
(t)
i .

10



Let m(t)
i be the indicator of the i-th expert making a mistake in round t, then

St+1 =
N∑
i=1

w
(t+1)
i =

N∑
i=1

w
(t)
i (1− εm(t)

i ).

This implies

St+1 = St − εSt
N∑
i=1

w
(t)
i m

(t)
i

St
= St · [1− εP (m̃t = 1)],

where m̃t is the indicator of the algorithm makes a mistake on iteration t. Hence,

St+1 = S1

T∏
t=1

[1− εP (m̃t = 1)] ≤ Ne−ε
∑T
t=1 P (m̃t=1).

On the other hand, denote by Mt(i) the number of mistakes made by expert i until time t, we have

(1− ε)
∑T
t=1Mt(i) = w

(T+1)
i ≤ ST+1.

Let us denote the total number of mistakes made by expert i as Mi =
∑T

t=1Mt(i).

As a result,
(1− ε)Mi ≤ Ne−εE[M ].

Take logarithm on both sides, we see that

Mi ln(1− ε) ≤ lnN − εE[M ],

which is the same as
E[M ] ≤ lnN −Mi ln(1− ε)

ε
.

The desired bound is then obtained by applying the fact that

− ln(1− ε) ≤ ε+ ε2

for ε ∈ (0, 1/2).

Remark 2.2. If nothing is known about the Mi’s, we can bound Mi by T and optimize

Mi + εT +
lnN

ε

with respect to ε, and obtain ε∗ =
√

lnN/T . Hence, the optimal bound is

min
i∈[N ]

Mi + 2
√
T lnN,

where the second term is exactly the regret comparing to the best expert. In case, the best expert
makes o(

√
T ) mistakes, then one can set ε to be a constant so that we will also incur the same

o(
√
T ) mistakes plus a log N factor.

11



2.4 Hedge algorithm

Now we turn to a slightly broader setting, i.e. the so-called dot-product game:

1. Learner plays a vector of probabilities pt = (pt1, . . . , p
t
N ).

2. The adversary produces the loss vector `t = (`t1, . . . , `
t
N ).

3. Loss incurred is `t · pt.

This is a generalization of the binary outcomes prediction game as the loss vector can now consist
of real numbers instead of 0, 1. Viewing this dot product game, we can see that fits perfectly into
the OCO setting. Here, the action set A is the probability simplex in Rn, and the loss p 7→ `t · p is
a linear function on the action space.

The Hedge algorithm for this dot product game is

1. Start with weights w1(i) = 1 ∀i.

2. In round 1 ≤ t ≤ T , pick a distribution pt = wt(i)∑
i wt(i)

.

3. Observe the loss lt.

4. After round t, update the weights wt+1(i) = wt(i)e
−εlt(i).

Theorem 2.4. Suppose the loss vectors {lt : 1 ≤ t ≤ n} consist of entries such that εlt(i) ≥ −1

for all i, t where ε > 0 is the parameter of the hedge algorithm. The regret of the resulting Hedge
algorithm can be bounded as follows:

Regret =
T∑
t=1

lt.pt − min
p∈∆n

T∑
t=1

lt.p

≤ log n

ε
+ ε

T∑
t=1

l2t · pt.

As a consequence, if the loss entries are bounded between −1 and 1; then we can write

Regret ≤ log n

ε
+ εT ≤ 2

√
T log n

where in the last inequality we have optimized over ε.

Proof. We’ll again use a potential based argument and keep track of the sum of weights as we did
in the analysis for the randomized weighted majority algorithm. Define

St =
∑
i

wt(i).

12



St+1 =
∑
i

wt+1(i)

=
∑
i

wt(i)e
−εlt(i) (Used the weight update for Hedge algorithm)

≤
∑
i

wt(i)[1− εlt(i) + ε2l2t (i)] (Used e−x ≤ 1− x+ x2 for x ≥ −1)

= St + ε2St
∑
i

pt(i)l
2
t (i)− εSt

∑
i

pt(i)lt(i) (Multiplied and divided by St)

≤ Steε
2l2t ·pt−εlt·pt (Used 1 + x ≤ ex).

Therefore, using this inequality recursively we can obtain

ST+1 ≤ S1e
ε2

∑T
t=1 l

2
t ·pt−ε

∑T
t=1 lt·pt

= neε
2
∑T
t=1 l

2
t ·pt−ε

∑T
t=1 lt·pt (1)

Now, we’ll find a lower bound on ST+1

ST+1 ≥ wT+1(i) ∀i

= e−ε
∑T
t=1 lt(i) (Used the weight update for Hedge algorithm) (2)

Thus, combine Eq. 2 and Eq. 1 to get

e−ε
∑T
t=1 lt(i) ≤ neε2

∑T
t=1 l

2
t ·pt−ε

∑T
t=1 lt·pt

T∑
t=1

lt · pt ≤
T∑
t=1

lt(i) +
log n

ε
+ ε

T∑
t=1

l2t · pt ∀i (Took log on both sides)

≤ min
i

T∑
t=1

lt(i) +
log n

ε
+ ε

T∑
t=1

l2t · pt.

The proof is nearly done after observing that

min
i

T∑
t=1

lt(i) = min
p∈∆n

T∑
t=1

lt.p

This is because of the fact that minimum of a linear function inside a convex set is attained at one
of the extreme points. We can now optimize w.r.t ε and set it to

√
logn
T to get the final bound.

Remark 2.3. We will see later in the course that the Hedge algorithm can be thought of as a
generalized version of online gradient descent.

Remark 2.4. The boundedness of the loss function plays an important role in the above proof.

3 Some Basic Results of Convex Optimization

Before venturing into online convex optimization, we will review some basic results in (offline)
convex optimization. We will begin with a few remarks connecting convex optimization to online

13



convex optimization

1. Offline Convex optimization is a special case of online convex optimization where the action
space A ⊆ Rd is convex and the loss function lt : A → R is a constant convex function f .

2. Low regret in this case implies ”closeness” of the average point to optimal point as follows

1

T

T∑
t=1

f(at)−min
a∈A

f(a) ≤ ε

=⇒ f

(
1

T

T∑
t=1

at

)
−min

a∈A
f(a) ≤ ε (Used convexity of f )

3.1 Gradient Descent

The gradient descent (GD) is a classical first order optimization algorithm with the update equation
given by

xt+1 ← xt − η∇f(xt) (3)

Given a convex function f : Rd → R, let x∗ = argminx∈Rd f(x) and let the suboptimality gap at x
be defined as δ(x) = f(x)− f(x∗).

The suboptimality gap lower bounds correlation between negative gradient at a point and the
direction to the optimal point as follows

δ(x) := f(x)− f(x∗)

≤ ∇f(x) · (x− x∗) (definition of convex function)

= −∇f(x) · (x∗ − x) (4)

This suggests that going in the negative gradient direction may not be a terrible idea.

3.1.1 Gradient Flow

We will first provide an approximate analysis of GD (Eq. 3) by taking infinitesimal step η resulting
in gradient flow as

dx(t)

dt
= −∇f(x(t)) (5)

Lemma 3.1. Gradient flow leads to low average suboptimality over the trajectory with

1

τ

∫ τ

0
δ(x(t))dt ≤ D2

0

2τ

where D2
0 = 1

2 |x(0)− x∗|2.
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Proof. We will track the time derivative of the squared distance to the optima.∫ τ

0

d|x(t)− x∗|2

dt
dt =

∫ τ

0
(x(t)− x∗) · −∇f(x(t))dt (Used gradient flow equation, Eq. 5)

≤
∫ τ

0
−δ(x(t))dt (Used Eq. 4)

1

2
|x(τ)− x∗|2 − 1

2
|x(0)− x∗|2 ≤

∫ τ

0
−δ(x(t))dt∫ τ

0
δ(x(t))dt ≤ 1

2
|x(0)− x∗|2

1

τ

∫ τ

0
δ(x(t))dt =

D2
0

2τ

Remark 3.1. The average point in the gradient descent trajectory has low suboptimality gap as
δ( 1
τ

∫ τ
0 x(t)dt) ≤ 1

τ

∫ τ
0 δ(x(t))dt ≤ D2

0
2τ . Also, the above result gives us a O(1/τ) rate of conver-

gence for gradient flow.

3.2 Discrete Time Analysis of Gradient Descent

Previously, we analyzed gradient flow to gain intuition for the convergence of gradient descent. In
this lecture, we do the discrete time analysis. We start with what we can call as the basic lemma.

Lemma 3.2 (Basic Lemma). Let g1, . . . , gT ∈ Rd be arbitrary vectors and let us consider the
sequence of states

xt+1 = xt − ηgt; t ∈ [T ]

for some stepsize η > 0. Then, for any x ∈ Rd,
T∑
t=1

〈xt − x, gt〉 ≤
|x1 − x|2

2η
+
η

2

T∑
t=1

|gt|2.

Proof. Let Dt = |xt − x|. Then,

D2
t+1 −D2

t = |xt − ηgt − x|2 − |xt − x|2

= −2η〈xt − x, gt〉+ η2|gt|2,

D2
T+1 −D2

1 =
T∑
t=1

(D2
t+1 −D2

t )

= −2η
T∑
t=1

〈xt − x, gt〉+ η2
T∑
t=1

|gt|2.

Rearranging the terms gives
T∑
t=1

〈xt − x, gt〉 =
D2

1

2η
−
D2
T+1

2η
+
η

2

T∑
t=1

|gt|2 ≤
|x1 − x|2

2η
+
η

2

T∑
t=1

|gt|2
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We can now use the above lemma to get error bounds for Gradient Descent. Compared with
gradient flow, there will be an additional error term in the discrete case. We formalize this idea in
the following theorem.

Theorem 3.3. Let f be a L lipschitz convex function, i.e, |∇f(x)| ≤ L for all x. Let xt+1 =

xt − η∇f(xt) where η = D1

L
√
T
. Then

1

T

T∑
t=1

{f(xt)− f(x∗)} ≤ D2
1

2ηT︸︷︷︸
gradient flow error

+
η

2T

T∑
t=1

|∇f(xt)|2︸ ︷︷ ︸
discretization error

,

where x∗ denotes the optimum and D1 = |x1 − x∗|. Then we have

1

T

T∑
t=1

{f(xt)− f(x∗)} ≤ LD1√
T
.

Proof. Pick gt = ∇f(xt) and x = x∗ in Lemma 3.2. Convexity of f and Lemma 3.2 gives

1

T

T∑
t=1

{f(xt)− f(x∗)} ≤ 1

T

T∑
t=1

∇f(xt)(xt − x∗) ≤
D2

1

2ηT
+

η

2T

T∑
t=1

|∇f(xt)|2 ≤
D2

1

2ηT
+
η

2
L2.

Now set η = D1

L
√
T

to finish the proof.

Remark 3.2. The optimal step size depends on the initial distance D1, the lipschitz constant L and
the time horizon T. One can use a time varying step size decaying like O(1/

√
t) to get a similar

upper bound. One can also use line search to choose the right step size.

3.3 Constrained Case

Suppose we want to minimize a convex function inside a convex set K ⊂ Rd. In this case, we can
use the projected gradient descent algorithm

xt+1 = ProjK(xt − ηgt).

The same bound as in Theorem 3.3 holds for projected gradient descent as well. We record this fact
as a corollary.

Corollary 3.4. Let f be a L lipschitz convex function, i.e, |∇f(x)| ≤ L for all x ∈ K where K is
a convex subset of Rd. Let

xt+1 = ProjK
(
xt − η∇f(xt)

)
where η = D1

L
√
T
. Then

1

T

T∑
t=1

{f(xt)− f(x∗)} ≤ D2
1

2ηT︸︷︷︸
gradient flow error

+
η

2T

T∑
t=1

|∇f(xt)|2︸ ︷︷ ︸
discretization error

,
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where x∗ denotes the optimum and D1 = |x1 − x∗|. Then we have

1

T

T∑
t=1

{f(xt)− f(x∗)} ≤ LD1√
T
.

Proof. As a consequence of convexity, |ProjK(x) − z|2 ≤ |x − z|2 for all z ∈ K. This is the
Pythagorean theorem for convex projections. Theorem 3.3 applies similarly to the projected gradient
descent because

|ProjK(xt − η∇f(xt))− x∗|2 ≤ |xt − η∇f(xt)− x∗|2

by the fact above.

Remark 3.3. 1. If f is convex but not differentiable, we can use subgradients instead of gradi-
ents and Theorem 3.3 and Corollary 3.4 still continue to hold.

2. The upper bound LD1/
√
T is often called a dimension-free bound as the dimension d of the

problem does not enter explicitly into the bound. Moreover, in machine learning, often we
truly are in very high dimensional settings but the lipschitz constant L is typically a constant.

3.4 Lower Bound for High Dimensions

To understand how tight the upper bound LD1/
√
T is, let us fix T . Let d = T + 1 and K be the

unit ball in Rd. The following is true.

Theorem 3.5. Define FL,d to be the space of convex functions defined on K with lipschitz constant
L. Then,

max
d≥1

(
inf
x̂

sup
f∈FL(K)

|f(x̂)− f(x∗)|
)
≥ L√

T + 1

where the infimum is over any output x̂ of an algorithm after T gradient queries.

Proof. For any output x̂ of an algorithm after T gradient queries,

inf
x̂

sup
f∈FL,d

|f(x̂)− f(x∗)| ≥ inf
x̃
Ef∈FL(K)|f(x̂)− f(x∗)|

where E is expectation over a suitably chosen distribution on FL(K). We now define this distribu-
tion.

Choose a random orthonormal basis {v1, . . . , vT+1} ∈ RT+1. Define the random function

f(x) = max
j=1,...,T+1

vᵀj x.

Note that this random function f defines a distribution on FL(K).

Now let us rename the orthonormal basis vectors so that after T queries, we do not know
vT+1 but possibly we know v1, . . . , vT . For any output of an algorithm x̂ ∈ K after T queries , by
symmetry we must have

E(vᵀT+1x̂ | first T queries) = 0.
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The logic is that conditionally on the first T queries, x̂ is fixed, and the conditional distribution of
vT+1 has to be symmetric about 0.

Therefore,

E{f(x̂) | first T queries} ≥ E(vᵀT+1x̂ | first T queries) = 0.

On the other hand, taking the point −
∑T+1

j=1 vj/
√
T + 1 gives

min
x∈K

f(x) ≤ − 1√
T + 1

.

This implies that

inf
x̃
Ef∈F1(K)|f(x̂)− f(x∗)| ≥ 1√

T + 1
.

Remark 3.4. The above lower bound only works when d is taken to be larger than T .

3.5 Center of Gravity Algorithm for Low Dimensions

We saw that the O(1/
√
T ) rate is unimprovable in high dimensions. Suppose the dimension d is

small. Then, an algorithm called the Center of Gravity algorithm can achieve better convergence
rate. This is based on the following geometric inequality.

Lemma 3.6. (Grunbaum’s inequality)

Let K be a convex body in Rd. For any half-space H containing the center of gravity defined
as

CG(K) =

∫
K
xdx/Vol(K)

(the center of gravity of K),

Vol(K ∩H) ≥ 1

e
Vol(K).

The Center of Gravity algorithm is as follows.

Remark 3.5. The idea of the algorithm is that for any x ∈ Ht, clearly f(x) ≥ f(xt) and hence the
Ht part in K is chopped off. Grunbaum’s inequality ensures that in each step we are chopping off a
constant fraction of K in volume. Hence, we will be left with an exponentially small sized set after
a few iterations. This is the multivariate analogue of the Binary search algorithm that can be used
in one dimension.

Remark 3.6. Note that this is more of a conceptual algorithm only as computing the Center of
Gravity is difficult and costly when d is large. Nevertheless, under the first order oracle model
(where you count only the number of first or zeroth order queries) it can theoretically improve the
O(1/

√
T ) rate.
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1 (Center of Gravity) Set K0 = K. For t = 0, . . . , T do

1. Compute xt = CG(Kt).

2. Define Ht = {x : ∇f(xt)
T (x− xt) ≥ 0} and Hc

t = {x : ∇f(xt)
T (x− xt) ≤ 0}.

3. Define Kt+1 = Kt ∩Hc
t .

After this, make T + 1 zeroth order queries and output

x̂ = argmin
x∈x0,...,xT

f(x).

Theorem 3.7. Let K ⊂ Rd be a convex body. Let f : K → [−1, 1] be a bounded convex function.
Fix 1 > ε > 0. After T = O(d log(1/ε)) steps of the Center of Gravity method, we have

f(xT )− f(x∗) ≤ ε⇔ f(xT )− f(x∗) ≤ exp(−cT
d

),

where c is some absolute constant.

Proof. Lemma 3.6 gives

Vol(KT ) < (1− 1

e
)TVol(K) ≤ εdVol(K)

where the second inequality follows by definition of T.

Define
Ω = {(1− ε)x∗ + εx, x ∈ K}.

Note that Vol(Ω) = εdVol(K), so we have

Vol(Ω) > Vol(KT ).

In particular, this implies that there must exists a time r ∈ {1, . . . , T} such that Kr+1 /∈ Ω. Take
any x ∈ Ω. It is then true that x ∈ Hr and hence

f(xr) ≤ f(x) ≤ (1− ε)f(x∗) + ε ≤ f(x∗) + 2ε.

Here, the first inequality is because x ∈ Hr, and we have used convexity and boundedness of f in
the later inequalities.

Finally, note that by definition of x̂,

f(x̂) ≤ f(xr) ≤ f(x∗) + 2ε

which finishes the proof.
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3.6 Beyond O(1/
√
T ) Rate

We have seen so far that gradient descent achieves O(1/
√
T ) rate when tuned properly. We have

also seen that this rate is unimprovable in high dimensions. We now explore more dimension free
rates under stronger assumptions on the underlying convex function. It turns out that gradient de-
scent achieves faster rates of convergence under the following assumptions:

1. Strong Convexity (curvature): O(1/T ).

2. Smoothness: O(1/T ).

3. Both Strong Convexity and Smoothness: O(e−cT ).

3.6.1 Strong Convexity

Definition 3.8. A function f : K → R is α-strongly convex if f(x) − (α/2)|x|2 is convex on K
where K is a convex set.

Lemma 3.9. If f(x) is α-strongly convex, then for all x, y ∈ K,

f(y) ≥ f(x) +∇f(x)(y − x) +
α

2
|y − x|2,

where K is some convex set.

Proof. This proof is left as an exercise.

Let us investigate how strong convexity helps in attaining faster rates for gradient flow. Recall
that for gradient flow is defined by

dx(t)/dt = −∇f(x(t)).

We will again track the squared distance

D2(t) = |x(t)− x∗|2/2.

By Lemma 3.9, we have

d

dt
D2(t) = −{x(t)− x∗}∇f(x(t))

≤ −{f(x(t))− f(x∗)} − αD2(t)

≤ −αD2(t),

D2(t) ≤ D2(0) exp(−αt).

The key point is that in the first inequality we have an extra −αD2(t) term which arises due
to strong convexity. So we see that atleast in terms of distance to optima, we have exponential
convergence. Can this argument be converted to show exponential convergence in function value as
well?

We now present the discrete time analysis.
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Theorem 3.10. Set the weight sequence

wt =
2t

T (T + 1)
.

Then we have the following bound on the weighted suboptimality gap

T∑
t=1

wt
(
f(xt)− f(x∗)

)
≤ 2L2

α(T + 1)
.

Proof. For gradient descent with step size ηt, we have

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 − 2ηt〈xt − x∗,∇f(xt)〉+ η2
t ‖∇f(xt)‖2

≤ ‖xt − x∗‖2 + 2ηt

[
f(x∗)− f(xt)−

α

2
‖xt − x∗‖2

]
,

(6)

where the second inequality is obtained by using the strong convexity property as in Lemma 3.9.
Using the lipschitz property of f and rearranging we obtain

f(xt)− f(x∗) ≤ (
1

2ηt
− α

2
)‖xt − x∗‖2 −

1

2ηt
‖xt+1 − x∗‖2) +

ηt
2
L2.

Now set ηt = 2
α(t+1) and multiply the above display both sides by t to obtain

t (f(xt)− f(x∗)) ≤ L2

α
+

[
αt(t+ 1)

4
− αt

2

]
‖xt − x∗‖2 −

αt(t+ 1)

4
‖xt+1 − x∗‖2

=
L2

α
+
α

4

[
t(t− 1)‖xt − x∗‖2 − t(t+ 1)‖xt+1 − x∗‖2

]
.

(7)

Summing up across all t = 1, . . . , T and dividing by T (T+1)
2 , the last term gives rise to a

telescoping sum: ∑T
t=1 t(f(xt)− f(x∗))
T (T + 1)/2

≤ 2L2

α(T + 1)
− α

2
‖xT+1 − x∗‖2

≤ 2L2

α(T + 1)
.

(8)

Remark 3.7. Thus, gradient descent for strongly convex and lipschitz functions converges at the rate
ofO(1/αT ). Note that if the strong convexity parameter α is small (as might be the case in problems
such as minimizing hinge loss with L2 regularization), the rate may not be very satisfactory.

3.7 Smooth Functions

Definition 3.11. A differentiable function f is L-smooth if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (9)

for all x, y.
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The following lemma would be useful in analysing gradient descent for smooth functions.

Lemma 3.12. If f is L-smooth then

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2. (10)

Proof.

f(y) = f(x) +

∫ 1

0
〈∇f(x+ t(y − x)), y − x〉dt

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0
〈∇f(x+ t(y − x))−∇f(x), y − x〉dt

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0
L‖y − x‖2tdt

= f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2,

(11)

where the first equality arises from applying the Fundamental Theorem of Calculus on g(t) =

f(x+ t(y − x)), and the inequality arises from the Lipschitz property of the gradients.

Gradient descent applied on a convex, smooth function yields a convergence rate of order
O(1/T ). The following theorem formally states this result.

Theorem 3.13. If f is convex and L-smooth, then

f(xT )− f(x∗) ≤ 4L‖x1 − x∗‖2

T
, (12)

when we set η = 1
3L .

Remark 3.8. The constants in the above theorem are not optimal. Interestingly, we get the con-
vergence result in terms of the last iterate xT . This is possible, since at each time gradient descent
update, we have strict descent if the step size is chosen appropriately as shown below.

Lemma 3.14. If 1− ηL
2 > 0, then f(xt+1) ≤ f(xt) and

f(xt)− f(x∗)

η(1− ηL/2)
≥ ‖∇f(xt)‖2. (13)

The proof of the above lemma is straightforward to see by setting y = xt+1 = xt − ηt∇f(xt)

and x = xt in Lemma 3.12.

We now prove Theorem 3.13.

Proof. We have that

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 − 2η〈xt − x∗,∇f(xt)〉+ η2‖∇f(xt)‖2. (14)

22



Using Lemma 3.14 we can write

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2η〈xt − x∗,∇f(xt)〉+
η

1− ηL/2
(f(xt)− f(x∗))

Now using convexity we can further write

(
2η − η

1− ηL/2

)
[f(xt)− f(x∗)] ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2. (15)

Using ηL = 1/3 and the strict descent property as stated in Lemma 3.14, we can sum over t to
obtain

f(xT )− f(x∗) ≤ 5

4ηT
‖x1 − x∗‖2 ≤

4L

T
‖x1 − x∗‖2. (16)

Remark 3.9. For both strongly convex and smooth functions we get O(1/T ) rate. But as the proofs
reveal, the reasons for this rate are quite different. In the case of strong convexity, we are able to
leverage strong convexity to get an exponentially fast rate for gradient flow but we can only bound
the discretization error term by η2L2.On the other hand, we can bound the discretization error term
proportional to ‖∇f(xt)‖2 term much better because of Lemma 3.14. Basically Lemma 3.14 tells us
that ‖∇f(xt)‖2 gets smaller when arrive near the optima. So the overall updates get autmatically
smaller even if our step size remains of constant order. It is useful to keep this intuition in mind.

Remark 3.10. We can have higher order versions of gradient descent. To motivate this, we can
see first order gradient descent as the solution to a minimization of a first order approximation with
quadratic penalty, i.e.,

xt+1 = arg min
x
f(xt) + 〈∇f(xt), x− xt〉+

1

2η
‖x− xt‖2. (17)

In order to extend to higher order derivatives, we can use a quadratic approximation with a cubic
penalty as follows:

arg min
x
f(xt) + 〈∇f(xt), x− xt〉+ 〈x− xt,∇2f(xt)(x− xt)〉+

1

6η
‖x− xt‖3. (18)

This is said to be the cubic regularized Newton method. Now, it is known that if the Hessians are
Lipschitz (in a certain sense), we can prove convergence of the order 1/T 2 for this cubic regularized
Newton’s method. So, if you add more smoothness to your convex function, it is possible to attain
faster rates, albeit with higher order versions of gradient descent.

add linear regression example

3.8 Both Strongly Convex and Smooth Functions

If f is smooth and strongly convex, we can get exponentially fast rate of convergence of gradient
descent. This is the content of the following theorem.
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Theorem 3.15. If f is α strongly convex and L smooth then gradient descent with step size η = 1
2L

satisfy
‖xt − x∗‖2 ≤ (1− µη)t‖xt − x∗‖2.

Consequently, by the smoothness property,

f(xt)− f(x∗) ≤ L(1− µη)t‖xt − x∗‖2.

Proof. The proof is left as an exercise in Problem Set 1.

3.9 Summary

We can now summarize the convergence rates we have seen for different function classes.

Gradient Descent Optimal Rate Function Class
G|x1−x∗|√

T

G|x1−x∗|√
T

Non Smooth G Lipschitz Convex
Functions.

G2

αT
G2

αT Non Smooth α Strongly Convex G

Lipschitz Functions.
L|x1−x∗|

T
L|x1−x∗|

T 2 L Smooth Convex Functions.
exp(−T/κ)|x1 − x∗|2 exp(−T/

√
κ)|x1 − x∗|2 L Smooth and α Strongly Convex

Functions.

The first column gives the rates for Gradient Descent while the second column gives the optimal
rate for the function classes. Note that for smooth functions, Gradient Descent does not attain the
optimal rate. In the last row, κ = L

α is the condition number. In this case, it turns out that a different
algorithm called the accelerated gradient descent attains the optimal rates. This is what we study in
the next section.

3.10 Nesterov’s Accelerated Gradient Descent

We now present Nesterov’s Accelerated Gradient Descent [22]. This algorithm attains the opti-
mal O(1/T 2) rate for smooth functions. Gradient Descent has an inherent lack of memory and
it turns out that it is possible to attain a better rate by using previous information when the un-
derlying function is smooth. Nesterov’s method reveals that the only thing that matters from
the past is a momentum like term. This analysis is unfortunately not going to be very illumi-
nating; see the blogpost https://blogs.princeton.edu/imabandit/2015/06/30/
revisiting-nesterovs-acceleration/ for some nice references which attempt to ex-
plain this algorithm from different perspectives.

Define momentum at the t th iterate to be

mt = γt(xt − xt−1)
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where γt > 0 is a tuning parameter sequence. Also let us use the notation x+ to denote the one step
gradient descent update with the ideal tuning parameter (η = 1

L ) for a L smooth function

x+ = x− 1

L
∇f(x).

Definition 3.16. Nesterov’s AGD is defined by the following update rule

xt+1 = (xt +mt)
+

Theorem 3.17. Let f be a L smooth convex function. Define the sequence of weights satisfying
w0 = 0, w1 = 1 and for t ≥ 1,

w2
t − w2

t−1 = wt.

Also define the sequence {γt+1}T−1
t=0 such that

γt+1 =
wt − 1

wt+1
.

Now by running Nesterov’s AGD with the above choice of γ1, . . . , γT the following holds:

f(xT+1)− f(x∗) ≤ cL

2T 2
‖x0 − x∗‖2

for some absolute constant c > 0.

Proof. Denote

gt = − 1

L
∇f(xt +mt).

Then we can write the AGD update as

xt+1 = xt +mt + gt. (19)

Denote δt = f(xt) − f(x∗) to be the suboptimality gap. We will now obtain bounds on both
δt+1 − δt and δt. Recall that for any x we have by setting η = 1

L in Lemma 3.14,

f(x+) ≤ f(x)− 1

2L
‖∇f(x)‖2. (20)

We have

δt+1 − δt = f((xt +mt)
+)− f(xt) ≤ f(xt +mt)− f(xt)−

1

2L
‖∇f(xt +mt)‖2 ≤

∇f(xt +mt)
Tmt −

1

2L
‖∇f(xt +mt)‖2 = −LgTt mt −

L

2
‖gt‖2

where in the first inequality we used (20) and in the second inequality we used convexity.

Similarly, we can obtain

δt+1 ≤ f(xt +mt)− f(x∗)− 1

2L
‖∇f(xt +mt)‖2 ≤ −LgTt (xt +mt − x∗)−

L

2
‖gt‖2.
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Now, for a weight sequence wt we can multiply the second last display above by wt − 1 and
add it to the last display to obtain

wtδt+1 − (wt − 1)δt ≤ −
L

2
wt‖gt‖2 − LgTt (wtmt + xt − x∗) (21)

=
−L
2wt

(
‖xt − x∗ + wtmt + wtgt‖2 − ‖xt − x∗ + wtmt‖2

)
(22)

where in the last equality we used ‖a‖2+2aT b = ‖a+b‖2−‖b‖2 with a = wtgt, b = wtmt+xt−x∗.

Now, we desire to have a telesoping sum on the R.H.S above. In order for this to happen we
wish that

xt − x∗ + wtmt + wtgt = xt+1 − x∗ + wt+1mt+1 = xt +mt + gt − x∗ + wt+1γt+1(xt+1 − xt)

where in the last equality we used the identity (19).

Equivalently, we wish for

wt(mt + gt) = (mt + gt)(1 + wt+1γt+1).

Let us set {γt+1}T−1
t=0 such that the above is true, that is,

γt+1 =
wt − 1

wt+1
.

Then by denoting
ut = ‖xt + wtmt − x∗‖2

we can rewrite (21) as

w2
t δt+1 − (w2

t − wt)δt ≤ −
L

2
(ut+1 − ut). (23)

Now set wt such that w0 = 0, w1 = 1 and

w2
t − w2

t−1 = wt.

With this choice, we can rewrite (23) as follows:

w2
t δt+1 − w2

t−1δt ≤
L

2
(ut − ut+1).

The previous bound is to our liking because on both sides we have a telescoping sum like term.
We can now sum over t = 1, . . . , T to obtain

w2
T δT+1 ≤

L

2
u1.
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Now, it remains to check that u1 = ‖x0 − x∗‖2 and wT ≥ cT for some absolute constant
c > 0. The second fact is left as an exercise!

Note that

u1 = ‖x1 + w1m1 − x∗‖2 = ‖x1 + w1γ1(x1 − x0)− x∗‖2 = ‖x1 − (x1 − x0)− x∗‖2 = ‖x0 − x∗‖2

where in the first equality we used the definition of m1 and in the second equality we used the fact
that γ1w1 = w0 − 1 = −1 by definition.

Remark 3.11. There is a result for AGD for both strongly convex and smooth functions which shows
that it is sufficient to do O(

√
κ log 1

ε ) many iterations to attain ε suboptmality gap.

Remark 3.12. There are other types of accelerated GD methods; for instance one is by Nemirovski.
It appears that Nesterov’s is the most popular.

3.11 Stochastic Gradient Descent

What if we do not have exact access to the gradient? The classic paper Robbins and Monro [28]
considered the problem when we only observe a stochastic version, namely a vector gt satisfying
E[gt |xt] = ∇f(xt) for every t. Then, in the SGD algorithm, we let

xt+1 = xt − ηtgt.

The paper [28] showed that under appropriate choices of the step size ηt and appropriate assump-
tions on f we have xt → x∗. A nice survey of SGD is given in [23].

3.11.1 Useage in Machine Learning

Typically in Machine Learning, one is interested in optimizing functions of the form f(x) =
1
n

∑n
i=1 fi(x) where each fi corresponds to a data point. Here, it is sampled uniformly from the

finite set {1, . . . , n} and then the stochastic gradient is set to be

gt(xt) = ∇fit(xt).

This is often called the multi-pass SGD.

Remark 3.13 (Single Pass SGD). In the i.i.d statistical learning, a single pass through the data
actually gives a generalization errror bound. This is in contrast to the multipass version which
minimizes the training error.
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3.11.2 Stochastic Convex Optimization

We now consider rates of convergence of SGD for convex functions.

Theorem 3.18 (Non Smooth Lipschitz Convex Funtions). Suppose f is a convex function, and the
stochastic gradients gt are all independent and satisfy

E[gt |xt] = ∇f(xt), and E
[
‖gt‖2 |xt

]
≤ σ2. (24)

If we choose the step size ηt = ‖x1−x∗‖σ√
t

, then

1∑T
t=1 ηt

T∑
t=1

ηt
(
E[f(xt)]− f(x∗)

)
≤ ‖x1 − x∗‖σ log T√

T
.

Proof. The proof is left as an exercise.

Remark 3.14. Under a random first order oracle model, where we are allowed to observe noisy
function and gradient values, a lower bound scaling like O(1/

√
T ) regret can be shown even when

d = 1. Contrast this with the deterministic case, when the O(1/
√
T ) holds only in high dimensions.

As in the case of usual gradient descent, strong convexity leads to a faster rate of convergence
for SGD as well.

Theorem 3.19 (Strongly Convex Functions). Suppose f is α-strongly convex, and the stochastic
gradient gt satisfies (24). If we choose step size ηt = 1

αt , then

1

T

T∑
t=1

(
E[f(xt)]− f(x∗)

)
≤ σ2 log t

2αt
.

Proof. The proof is left as an exercise.

Remark 3.15. Note that the above theorems show that SGD attains the same rate of convergence as
GD upto log factors. In this sense, there is minimal loss in using stochastic gradients which appears
at a first glance to be a surprising and interesting fact.

3.11.3 Cannot Expect Fast Rates for General Smooth Convex Functions

Recall that when we use GD in the setting of convex optimization , the smoothness of function f
will help us derive a better bound on the discretization error. This is because the gradient ‖∇f(xt)‖
gets smaller as xt goes closer to the optima. However, things are different in SGD, because we
cannot expect the stochastic gradient ‖gt‖ to get smaller near optima due to the variance of the
noise. This prevents us from getting the O(1/T ) rate for general smooth convex functions and the
exp(−T/κ) rate for both strongly convex and smooth convex functions using SGD. However, for
functions of the form of a finite sum as is of interest in ML, one can modify SGD by reducing its
variance to still attain fast rates. This is the content of the next section.
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3.11.4 Variance Reduced SGD for Finite Sum Functions

Consider the finite sum setting, where we have

f =
1

n

n∑
i=1

fi

and assume that each fi is L-smooth while the function f overall is still α-strongly convex. Such
functions arise naturally in ML; for instance when we do regularized least squares or logistic re-
gression.

For such functions, in order to achieve ε sub-optimality gap, one needsO(κ log 1
ε ) iterations of

GD (using Theorem 3.15) and one needs O( 1
αε) iterations in SGD (using Theorem 3.19). However,

to compute GD in each iteration we need to touch all the n data points. Therefore, we should really
compare O(n log 1

ε ) to O(1
ε ). GD is preferable when we desire very high accuracy, that is, ε is very

small. However, for reasonable ε and large n, SGD might also be preferable. It is thus a natural
question to ask if there is a method which enjoys cheap computation per round like the SGD and
yet gets log 1

ε dependence on ε like GD. This is where the idea of variance reduction comes in. This
was first proposed by [16] and has now been used in several other optimization problems.

We now introduce the Stochastic Variance Reduced Gradient (SVRG) algorithm.

Algorithm 1: SVRG algorithm
Data: access g of the gradient∇f at any arbitrary point, step size η, length of each epoch

T , number of iteration N , step size η = cL with 0 < c� 1

Result: estimation of the optimal point x∗ of f
1 Initialize y1;
2 for j ← 1 to N do
3 Calculate∇f(yj);
4 x0 = yj ;
5 for t← 1 to T do
6 it ∼ unif([n]);
7 gt = ∇fit(xt)−∇fit(yj) +∇f(yj);
8 xt+1 = xt − ηgt;
9 end

10 yj+1 = 1
T

∑T
t=1 xt;

11 end
12 Output yT+1 to approximate x∗;

Remark 3.16. In words, the SVRG algorithm computes the full gradient (using all data points) once
in a while and uses this full gradient to construct a variance reduced stochastic gradient (using a
single random data point) in the other rounds.

For SVRG, we have the following result.

29



Theorem 3.20. By taking η = c
L and T = CL

α for constants c, C, we have

E
[
f(yj+1)− f(x∗)

]
≤

2c+ 1
cC

1− 2c
E
[
f(yj)− f(x∗)

]
.

Proof. Recall that we have

f(yj+1)− f(x∗) = f

(
1

T

T∑
t=1

xt

)
− f(x∗)

≤ 1

T

T∑
t=1

f(xt)− f(x∗)

≤ 1

2ηT
‖yj − x∗‖2 +

η

2T

T∑
t=1

‖gt‖2

=: Fe +De.

where the first inequality follows from convexity and the second inequality follows from the basic
lemma 3.2. As usual, we can think of Fe as the flow error term and De to be the discretization error
term.

By strong convexity, the flow error Fe can be bounded by

Fe ≤
1

αηT

(
f(yj)− f(x∗)

)
. (25)

To handle the discretization error De, we will need the following lemma.

Lemma 3.21. If i ∼ Unif ([n]), then for any x we have

E
∥∥∇fi(x)−∇fi(x∗)

∥∥ ≤ 2L
(
f(x)− f(x∗)

)
.

Let us see how we can finish the proof assuming the above lemma. We can write

E‖gt‖2 = E‖∇fit(xt)−∇fit(yj) +∇f(yj)‖2

≤ 2E‖∇fit(xt)−∇fit(x∗)‖2 + 2E‖∇fit(yj)−∇f(yj)−∇fit(x∗)‖2.

To bound the second term above in the R.H.S, we have

E‖∇fit(yj)−∇f(yj)−∇fit(x∗)‖2

= E
∥∥(∇fit(yj)−∇fit(x∗))− E

(
∇fit(yj)−∇fit(x∗)

)∥∥2

≤ E
∥∥∇fit(yj)−∇fit(x∗)∥∥2

where we used the fact that E
(
∇fit(yj)−∇fit(x∗)

)
= ∇f(yj) and the fact that variance is at most

the second moment.

From the last two displays, we obtain

E‖gt‖2 ≤ 2E‖∇fit(xt)−∇fit(x∗)‖2 + 2E
∥∥∇fit(yj)−∇fit(x∗)∥∥2

(i)
≤ 4L

(
f(xt)− f(x∗)

)
+ 4L

(
f(yj)− f(x∗)

)
.
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where in the second inequality we used Lemma 3.21.

This implies that the discretization error term is bounded as follows:

De ≤
4Lη

2T

T∑
t=1

[(
f(xt)− f(x∗)

)
+
(
f(yj)− f(x∗)

)]
= 2Lη · 1

T

T∑
t=1

[
f(xt)− f(x∗)

]
+ 2Lη

[
f(yj)− f(x∗)

]
.

Combining the last display alongwith (25) we get

Ef(yj+1)− f(x∗) ≤ 1

T

T∑
t=1

E
[
f(xt)− f(x∗)

]
≤ Fe +De

≤
(

2Lη +
1

αηT

)(
Ef(yj)− f(x∗)

)
+ 2Lη · 1

T

T∑
t=1

E
[
f(xt)− f(x∗)

]
which further implies

Ef(yj+1)− f(x∗) ≤
2Lη + 1

αηT

1− 2Lη

(
Ef(yj)− f(x∗)

)
.

By choosing Lη = c � 1 and T = CL
α , the contraction number is 2c+ 1

cC
1−2c < 1 by choosing c small

enough and C large enough.

All that remains is to give a proof of Lemma 3.21.

Let us define
gi(x) = fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉

i.e. the Bregman divergence of fi. Then gi(x∗) = 0 and gi ≥ 0 due to the convexity of fi. Notice
that gi is also L-smooth, since fi is L-smooth. Therefore, by applying Lemma 3.14 with η = 1/L

we obtain Therefore, we have for any x,

‖∇gi(x)‖2 ≤ 2L gi(x).

Since∇gi(x) = ∇fi(x)−∇fi(x∗), taking expectation w.r.t. i yields

E‖∇fi(x)−∇fi(x∗)‖2 = E‖∇gi(x)‖2 ≤ 2L Egi(x) = 2L
(
f(x)− f(x∗)

)
.

This finishes the proof of Lemma 3.21 and hence finishes the proof of Theorem 3.20.

4 Online Convex Optimization

Recall the basic OCO framework introduced by Zinkevich [34].
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1. The learner plays xt ∈ A where K ⊂ Rd is a convex set of all possible actions.

2. Nature or Adversary reveals a convex loss function ft : A → R+.

3. Incur loss ft(xt).

For any algorithm that generates x1, x2, . . . , xT , its regret at a point x ∈ K is

RT =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x).

The goal of the learner is to minimize the regret. Ideally we would like to develop online
algorithms whose regret would grow sublinearly o(T ) for all points x ∈ K.

4.1 Online (Projected) (Sub)Gradient Descent

The online gradient descent algorithm can be extended to the online setting. The update step is as
follows:

xt+1 = PK(xt − ηt∇ft(xt)) (26)

where PK is the projection operator onto the convex set K. Essentially the same analysis of OGD
we have seen so far extends to the online setting as well to give a O(

√
T ) regret.

Theorem 4.1 (OGD for Non Smooth Lipschitz Losses). Let x1, . . . , xT denote the OGD updates
with step size η. Suppose each of the loss functions f1, . . . , fT are G lipschitz and Diam(K) ≤ D.
Then we have the regret bound for any x∗ ∈ K,

T∑
t=1

ft(xt)− ft(x∗) ≤
D2

2η
+
η

2
TG2.

Consequently, by setting η = D
G
√
T

we obtain the bound DG
√
T .

Proof. We will simply use the basic lemma 3.2 by setting gt = ∇ft(xt),

T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

∇fᵀt (xt)(xt − x∗) ≤
|x1 − x∗|2

2η
+
η

2

∑
|∇ft(xt)|2

≤ D2

2η
+
η

2
TG2.

Remark 4.1. If instead, ηt = D
G
√
t

is taken to be time varying, then it is possible to show a regret

bound 3
2DG

√
T , inflated by 3/2.

Remark 4.2. As before, the above proof works even if we consider a subgradient of ft at xt.
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4.1.1 Lower Bound

Theorem 4.2. For any online algorithm there exists an online convex optimization problem such
that this algorithm suffers a regret Ω(DG

√
T ).

Proof. Let the action space be the n dimensional hypercube

K = {x ∈ Rn, |x|∞ ≤ 1} . (27)

The dimension n can be anything including 1.

For each vertex of the hypercube v ∈ {±1} define the linear loss function

fv(x) = vᵀx, ∀v ∈ {±1}n

Therefore, the diameter D of K and the lipschit constant of the loss functions are bounded by

D ≤ 2
√
n, and G ≤

√
n (28)

Suppose at each round t, the loss function fvt is obtained by choosing vt uniformly from the
finite set K. Now note that under this assumption, for any online algorithm,

Evt [ft(xt)] = Evt [v
ᵀ
t xt] = 0

.

However,

Evt

[
min
x

T∑
t=1

ft(x)

]
= Evt

[
min
x

T∑
t=1

n∑
i=1

vt(i)xi

]
(29)

= nE

[
−

∣∣∣∣∣
T∑
t=1

vt(1)

∣∣∣∣∣
]

(30)

= −Ω(n
√
T ) (31)

4.2 OGD Regret for Strongly Convex Losses

As in the offline case, we can improve the regret bound for OGD if all the loss functions f1, . . . , fT

are strongly convex.

Theorem 4.3. If all the loss functions ft are α-strongly convex in addition to G lipschitz then by
setting ηt = 1

αt , we can obtain the regret bound for any x∗ ∈ K,

T∑
t=1

ft(xt)− ft(x∗) ≤
G

2α
(1 + log T ). (32)
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Proof. α-strongly convexity gives

2(ft(xt)− ft(x∗)) ≤ 2∇fᵀt (xt)(xt − x∗)− α |xt − x∗|2

From the Pythagorean theorem about convex projections we have

|xt+1 − x∗|2 = |PK(xt − ηt∇ft(x)t))− x∗)|2 ≤ |xt − ηt∇ft(x)t− x∗|2

and by expanding the square we get

|xt+1 − x|2 ≤ |xt − x|2 + η2
t |∇ft(xt)|

2 − 2ηt∇fᵀt (xt)(xt − x∗)

which further can be rearranged to give us the upper bound

2∇fᵀt (xt)(xt − x∗) ≤
|xt − x|2 − |xt+1 − x|2

ηt
+ ηtG

2.

Now use the lower bound on 2∇fᵀt (xt)(xt−x∗) given by the first display alongwith the display
above to obtain

2

T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

|xt − x∗|2
(

1

ηt
− 1

ηt−1
− α

)
+G2

T∑
t=1

ηt

≤ 0 +G2
T∑
t=1

1

αt
≤ G2

α
(1 + log T )

where in the last inequality we used the fact that ηt = 1
αt and η0 = 0.

4.3 Exp Concave Functions

In this section, we consider a class of functions called exp concave functions. The motivation behind
considering such functions is the following. Consider the following loss functions of interest:

• ft(β) = (xTt β − yt)2 (Online Linear Regression)

• ft(β) = log(1 + exp−ytxttβ) (Online Logistic Regression)

• ft(u) = − log(γTt u) (Online Portfolio Selection)

These loss functions are not strongly convex as it can be checked that the Hessian is a rank 1

matrix. Are we doomed to a O(
√
T ) regret in these cases? The answer is no!

We will see that the loss functions above still posess curvature allowing for a faster regret
bound. In particular, all the loss functions above are exp concave functions. The class of strongly
convex lipschitz functions are exp concave but the reverse is not necessarily true. As we will see,
this class of functions still posess a notion of curvature which allowsO(log T ) regret. The algorithm
that achieves such log regret is the Online Newton Step algorithm which is also a fundamental online
learning algorithm.
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4.3.1 Universal portfolio selection

A practical example where an exponential concave loss function arises is the universal portfolio
selection problem. Consider d stocks and Sd be the probability simplex in d dimensions. For time
t = 1, · · · , T ,

• Choose a distribution xt ∈ Sd where xt(i) corresponds to the proportion of current wealth
invested in stock i.

• Adversary/market gives stock returns γt ∈ Rd+ where γt(i) = pt+1(i)
pt(i)

.

• Let wt = Total wealth on day t. Then wt+1 = wt
∑d

i=1 xt(i)γt(i) and hence wt+1

wt
= γTt xt

From the expressions,

log(wt+1)− log(wt) = log(γTt xt) (33)

We can view this as an instance of OCO where the convex loss functions are ft(u) = − log(γTt u).

The regret can hence be defined as

Regret =
T∑
t=1

γtxt − min
x∈Sd

T∑
t=1

log(γTt x) (34)

The above measures the excess loss as compared to the best constant rebalancing portfolio.

Observe that
∇(− log(γTx)) =

−γt
γTt x

∇2(− log(γTt x)) =
γtγ

T
t

(γTt x)2

(35)

Observe that the Hessian γtγTt
(γTt x)2

is rank 1 and hence not stongly convex, however, it is possible

to attain O(log(T )) regret as the loss function that is to be minimized, − log(γTx) is exp concave.

4.3.2 Definition and Properties

Definition 4.4. A function f : K → R is α-exp-concave over K if e−αf is concave.

Lemma 4.5. A twice differentiable function f is α exp concave iff∇2f(x) � α∇f(x)∇f(x)T .

We leave the proof of the above lemma as an exercise.

The next lemma shows that exp concave and lipschitz functions posess curvature in the direc-
tion of its gradient.
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Lemma 4.6. Let f : K → R be an α-exp-concave function and D,G denote the radius of K and
lipschitz constant of f . The following holds for all γ ≤ 1

2 min{ 1
GD , α} and all x, y ∈ K:

f(u) ≥ f(w) + 〈u− w,∇f(x)〉+
α

2
(〈u− w,∇f(w)〉)2

Proof. For all γ s.t. 2γ ≤ α the function h(x) = e−2γf(x) is concave (can be inferred from compo-
sition of functions x

2γ
α which is concave and increasing and exp{−αf(x)} which is concave). By

the concavity of h(x),

h(u) ≤ h(w) +∇h(w)T (u− w)

The gradient∇h(w) = −2γ exp{−2γf(w)}∇f(w) gives

exp−2γf(u) ≤ exp{−2γf(w)}
(
1− 2γ∇f(w)T (u− w)

)
Simplifying the equation by taking log on both sides,

f(u) ≥ f(w)− 1

2γ
log(1− 2γ∇f(w)T (u− w))

By the Cauchy Schwarz inequality |2γ∇f(w)T (u−w)| ≤ 2γGD ≤ 1. Moreover, we will use
the fact that for |x| ≤ 1, log(1 + x) ≤ x− 1

4x
2. Using the above two facts for x = 2γ∇f(w)T (u−

w), we get the inequality

f(u) ≥ f(w) + 〈u− w,∇f(w)〉+
α

2
(〈u− w,∇f(w)〉)2

4.4 Online Newton Step (ONS) algorithm

Next we provide the formal description of the Online Newton Step Algorithm.

Consider the action space K ⊆ Rd which we assume contains 0. Fix any arbitrary ε, γ > 0.
Then ONS(ε, γ) is as follows.

1. Initialize x1 = 0 ∈ K and A0 = εId, where Id is the d× d identity matrix.

2. For any time t ∈ [T ], let

(a)
∇t := ∇ft(xt) and At := At−1 +∇t∇Tt .

(b) Update xt+1 as

xt+1 = PAt

(
xt −

1

γ
A−1
t ∇t

)
,
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where for any u ∈ Rd,

PAt(u) := argmin
x∈K

(x− u)TAt(x− u).

Remark 4.3. Recall that in ordinary Newton-Raphson method we update xt+1 as

xt+1 = xt −H−1
t ∇t,

where Ht is the corresponding Hessian matrix. In the ONS algorithm, we see that the update is of
a similar form.

Remark 4.4. A natural question at this point is how one can come up with the ONS algorithm.
There is a Follow the Leader (FTL) interpretation of ONS which may be a more natural starting
point to explain ONS; see the paper [15] where ONS was first introduced.

Now we present the main result which establishes an upper bound on the regret of the ONS
algorithm when the loss functions are exp-concave.

Theorem 4.7 (Regret Bound for Online Newton Step). SupposeK ⊆ Rd such that for every v ∈ K,
|v| ≤ D, and for every t ∈ [T ], let the loss function ft : K → R be an α-exp-concave function such
that |∇f | ≤ G. If the updates {xt : t ∈ 0, . . . , T} are derived by the ONS(ε, γ) algorithm then the
regret

RT :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤ γ

2
εD2 +

d

2γ
log

(
1 +

TG2

εd

)
.

Moreover, if we set

ε =
d

γ2D2
and γ =

1

2
min

{
α,

1

2GD

}
then

RT ≤ d
{

log

(
1 +

T

16d2

)
+ 1

}
.

Remark 4.5. Thus, the Online Newton Step algorithm, ideally tuned, does attain a O(d log T )

regret.

Proof. Let

x∗ := argmin
x∈K

T∑
t=1

ft(x).

For any t ∈ [T ], if we denote by | · |At the norm induced by At, i.e.,

|u|At := uTAtu, u ∈ Rd,
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then

|xt+1 − x∗|2At

≤
∣∣∣∣xt − 1

γ
A−1
t ∇t − x∗

∣∣∣∣2
At

= |xt − x∗|2At −
2

γ
〈xt − x∗,∇t〉+

1

γ2
∇tA−1

t ∇t

= |xt − x∗|2At−1
+ 〈xt − x∗,∇t〉2 −

2

γ
〈xt − x∗,∇t〉+

1

γ2
∇tA−1

t ∇t, (36)

where the inequality follows from the Pythagoras Theorem and the last equality follows by using
the fact that At = At−1 +∇t∇Tt .

Therefor, for any t ∈ [T ] we have

ft(xt)− ft(x∗) ≤ 〈xt − x∗,∇t〉 −
γ

2
〈xt − x∗,∇t〉2

≤ γ

2

(
|xt − x∗|2At−1

− |xt+1 − x∗|2At
)

+
1

2γ
∇tA−1

t ∇t, (37)

where the first inequality follows from Lemma 4.6 and the second one follows from (36).

Now, note that

∇tA−1
t ∇t = Tr

(
∇t∇tA−1

t

)
= Tr

(
(At −At−1)A−1

t

)
≤ log det(At)− log det(At−1), (38)

where the inequality follows from the following fact. Since the function h(A) = log det(A) is
concave with∇h(A) = A−1 we have

log det(At−1)− log det(At) ≤ (vec(At−1)− vec(At))
T A−1

t = Tr
(
(At−1 −At)A−1

t

)
,

where vec(A) represents the vectorized form of any matrix A.

Thus, from (37) and (38) we have

ft(xt)− ft(x∗)

≤ γ

2

(
|xt − x∗|2At−1

− |xt+1 − x∗|2At
)

+
1

2γ
log det(At)− log det(At−1), (39)

which allows us to have a desired form of telescoping sum when summing over t ∈ [T ]. Therefore,
we finally have

T∑
t=1

ft(xt)− ft(x∗)

≤ γ

2
|x1 − x∗|2A0

+
1

2γ
(log det(AT )− log det(A0))

≤ γε

2
|x1 − x∗|2 +

1

2γ

(
d log

(
ε+

TG2

d

)
− d log ε

)
≤ γεD2 +

d

2γ
log

(
1 +

TG2

εd

)
,
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where the first inequality follows from (39). The second inequality follows from the observations
that: (i) since for every t ∈ [T ], Tr(∇t∇Tt ) = |∇t|2 ≤ G under the assumption, by the recursion
we have Tr(AT ) ≤ dε+ TG2, and this further yields

1

d
log det(AT ) =

1

d

d∑
i=1

log λ
(T )
i ≤ log

(
1

d

∑
i

λ
(T )
i

)

= log

(
1

d
Tr(AT )

)
≤ log

(
ε+ TG2

)
,

where {λ(T )
i : i ∈ [d]} represents the eigen values of AT , and (ii) log det(A0) = d log ε. The third

inequality holds since by using the assumption we have

|x1 − x∗|2 ≤ 2(|x2
1|+ |x∗|2) ≤ 2D2.

The proof is complete.

5 Follow the Regularized Leader Algorithm

5.1 Follow the Leader

Let us start with the follow the leader (FTL) algorithm, whose update scheme is:

xt = argmin
x∈K

t−1∑
i=1

fi(x).

The initial point x1 can be an arbitrary point in K.

Lemma 5.1. [FTL Regret Bound] Let x1, x2, . . . be the iterates of FTL. Then for all u ∈ K,

T∑
t=1

[ft(xt)− ft(u)] ≤
T∑
t=1

[ft(xt)− ft(xt+1)].

Remark 5.1. We can think of the ft(xt)− ft(xt+1) term as measuring the stability of the updates.
Note that xt+1 is the ideal point we should have played at round t. So, essentially the instantaneous
regret bound measures how close xt is to the ideal one step lookahead play xt+1 in terms of the loss
function xt.

Proof. It suffices to show
T∑
t=1

ft(xt+1) ≤
T∑
t=1

ft(u).

We shall do this by induction: it is clear that f1(x2) ≤ f1(u). Assume the inequality holds up to
T − 1, i.e.

T−1∑
t=1

ft(xt+1) ≤
T−1∑
t=1

ft(u).
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Add fT (xT+1) to both sides, we see that

T−1∑
t=1

[ft(xt+1) + fT (xT+1)] ≤
T−1∑
t=1

ft(u) + fT (xT+1) ≤
T∑
t=1

ft(xT+1).

But by definition of xT+1,
T∑
t=1

ft(xT+1) ≤
T∑
t=1

ft(u)

for all u. Hence, we are done.

Exercise 5.2 (Predict the next vector). Suppose

ft(x) =
1

2
‖x− zt‖22

for an arbitrary sequence of zt ∈ Rd. If we run FTL on this, then show that

Regret ≤ 4L2(1 + log T ),

where L = max1≤t≤T ‖x− zt‖22.

FTL can fail on some instances of OCO. The following is an example.

Example (Failure of FTL). Let K = [−1, 1], ft(x) = ztx, where

zt =


−1/2 t = 1

1 t even

−1 t > 1, t odd

Then the FTL update reduces to

xt =

1 t even

−1 t odd

In this case, the total loss will be T , but the best possible loss is 0 (obtained by playing xt = 0 every
round). Hence, the regret of FTL is atleast T .

Remark 5.2. The failure of FTL is due to xt being unstable, i.e. shifting drastically from round to
round. This can be fixed by regularizing the updates as we will now see.

5.2 Follow the Regularized Leader

Now we consider the follow the regularized leader (FTRL) algorithm:

xt = argmin
x∈K

[
t−1∑
i=1

fi(x) +R(x)

]
,

where R(x) is some regularization function. The initial point x1 is a minimizer of R in K.
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Since ∇fi(xi)>x can be used to estimate fi at a point xi, we can also define the linearized
FTRL algorithm:

xt = argmin
x∈K

[
t−1∑
i=1

∇fi(xi)>x+R(x)

]
.

The linearized version can be computationally simpler. We will see that we will obtain similar
regret for both the versions.

Example. Suppose ft(x) = g>t x, R(x) = ‖x‖22/(2η). Then the FTRL updates are given by

x1 = 0 and xt+1 = argmin
x∈K

[
T∑
i=1

g>i x+
1

2η
‖x‖22

]
= −η

t∑
i=1

gi.

Note that this implies xt+1 = xt − ηgt. That is, linearized FTRL with R(x) = ‖x‖22/(2η) is
equivalent to OGD.

We next present a regret bound for FTRL.

Lemma 5.3 (FTRL Regret Bound). Suppose x1, x2, . . . , is the sequence of iterates produced by
FTRL. Then for all u ∈ K,

T∑
t=1

[ft(xt)− ft(u)] ≤ R(u)−R(x1) +

T∑
t=1

[ft(xt)− ft(xt+1)].

Remark 5.3. We can think of the first term R(u) − R(x1) as the size of K relative to R, and
ft(xt)− ft(xt+1) as the stability term as before. The idea is that the regularization R ensures that
xt is close to the one step lookahead xt+1 to give stability to the iterates; we pay an additional cost
(compared to FTL) which is the R(u)−R(x1) term.

Proof. Run FTL on f0 = R and f1, . . . , fT . Then we can use Lemma 5.1 and obtain

Regret +R(x0)−R(u) ≤ S +R(x0)−R(x1),

where

S =
T∑
t=1

[ft(xt)− ft(xt+1)].

Set x0 = u finishes the proof.

Remark 5.4. Since it is enough to consider linear loss functions and OGD is an instance of lin-
earized FTRL, we can prove the OGD regret bound (for general convex lipschitz losses) using the
previous lemma. To that end, take

gt(x) = ∇ft(xt)Tx, R(u) =
1

2η
‖u‖22

. Then note that gt(xt)− gt(xt+1) = η‖∇ft(xt)‖2 and R(x1) = 0. Thus the

Regret ≤ ‖u‖
2
2

2η
+ η

T∑
t=1

‖gt‖22

which is exactly the bound for OGD.
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5.2.1 Strongly Convex Regularizers

In the N experts problem, we have K = SN which is a subset of the unit ball and ft(x) = `>t x,
where we assume ‖`t‖∞ ≤ 1. OGD in this case gives the regret bound asO(GD

√
T ) = O(

√
NT ),

where D = diam(SN ) = 2, and G = ‖`t‖2 ≤
√
N . In constrast, the regret with hedge algorithm

is O(
√

logN
√
T ). This suggest the OGD bound is suboptimal in N as compared to the Hedge

algorithm. We have already seen that OGD is an instance of FTRL with `22 regularization. We
will see in a bit that the Hedge algorithm can also be seen as an instance of FTRL with a different
regularizer.

We will now explore some properties of the FTRL (Follow the Regularized Leader) algorithm
in the setting where the regularization function is strongly convex. Let us use |y| to represent the
norm of a vector y in some vector space (Rn usually), and |y|∗ the dual norm of y, which is defined
as

|y|∗ := sup
x:|x|≤1

xT y.

Notice that the norm | · | here needn’t be the Euclidean norm.

Definition 5.4. Suppose f : K → R. Then f is called L− Lipschitz with respect to the norm | · |
if for any x, y ∈ K we have

|f(x)− f(y)| ≤ L|x− y|. (40)

Lemma 5.5. Suppose f : K → R. Then f is L − Lipschitz with respect to the norm | · | if and
only if for any x ∈ K and z ∈ ∂f(x), we have

|z|∗ ≤ L, (41)

where ∂f(x) is the set of subgradients of f at point x.

The proof of the lemma is left as an exercise. Now we give the definition of a strongly convex
function under a given norm | · |.

Definition 5.6. Assume K is a convex set. A convex function f : K → R is α−strongly convex with
respect to norm | · | if for any x,y ∈ K and z ∈ ∂f(x), we have

f(y) ≥ f(x) + zT (y − x) +
α

2
|y − x|2. (42)

Remark 5.5. If f is twice differentiable, a sufficient condition for f to be α−strongly convex with
respect to norm | · | is that

(y − x)t∇2f(z)(y − x) ≥ α

for all x, y, z ∈ K.

Example. The function f(x) =
‖x‖22

2 is 1 strongly convex w.r.t to the Euclidean norm.
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Example. Let us use the notation H(p) to denote the entropy of a probability vector p ∈ Rn, and
define the function

R(p) = −
∑
i

pi log
1

pi
= −H(p), (43)

on the domain Sn, which is the probability simplex in Rn. Then,

Lemma 5.7. R is 1 strongly convex on Sn w.r.t the `1 norm | · |1.

Proof. It can be shown that this function is 1−strongly convex with respect to the `1 norm | · |1. To
see this, notice that the Hessian matrix at a point w is diagonal, with the ith diagonal element 1/wi,
then according to Cauchy-Schwarz inequality and the fact that

∑
iwi = 1 we have

pT∇2R(w)p = (
n∑
i=1

p2
i

wi
)
∑
i

wi ≥ (
n∑
i=1

(
pi√
wi

√
wi))

2 = |p|21, (44)

Now we start to analyze the regret of a FTRL algorithm equipped with a strongly convex reg-
ularization function. By Lemma 5.3 we need to control the stability term. This is the content of the
next lemma.

Lemma 5.8. Let the regularization function R be α−strongly convex over K with respect to | · |,
and assume ft is Lt− Lipschitz w.r.t. the same norm | · |. Then

ft(xt)− ft(xt+1) ≤ Lt|xt − xt+1| ≤
L2
t

α
. (45)

Proof. Let Ft(w) =
∑t−1

i=1 fi(w) + R(w), so that xt = arg minw∈K Ft(w). Observe that Ft(w) is
α− strongly convex since R is. Then we get

Ft(xt+1) ≥ Ft(xt) +∇Ft(xt)(xt+1 − xt) +
α

2
|xt+1 − xt|2 ≥ Ft(xt) +

α

2
|xt+1 − xt|2,

where the second inequality is due to the fact that xt is a minimizer of Ft within K, xt+1 ∈ K and
the general first order optimality criterion for the optima. Similarly, at xt+1 we have

Ft+1(xt) ≥ Ft+1(xt+1) +
α

2
|xt − xt+1|2.

Combine them and we get

α|xt − xt+1|2 ≤ ft(xt)− ft(xt+1) ≤ Lt|xt − xt+1|

which implies that

|xt − xt+1| ≤
Lt
α
.

Combining the above with the fact that ft is Lt lipschitz finishes the proof.
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The above lemma directly yields the following theorem.

Theorem 5.9 (Regret for FTRL with Strongly Convex Regularizer). Let the regularization function
R be α−strongly convex over K with respect to | · |, and assume ft is Lt− Lipschitz w.r.t. the same
norm | · |. Assume L > 0 is such that (

∑T
i=1 L

2
i )/T ≤ L2.

Regret(u) ≤ R(u)−min
w∈K

R(w) +
TL2

α
. (46)

Proof. The proof directly follows from Lemma 5.3 and Lemma 5.8.

Let us apply the above theorem to our two running examples.

1. Firstly, if we choose R(x) = |x|22/2η then this is strongly convex w.r.t the Euclidean norm
with α = 1/η, hence we can recover the online gradient descent bound (O(

√
T )) for the

FTRL algorithm. Note that this proves a regret bound for the actual FTRL algorithm and not
the linearized version, although both the regret bounds are identical.

2. Let’s consider the prediction with experts advice problem where the domainK is the probabil-
ity simplex Sn and let us consider the FTRL algorithm with the regularizerR(p) = −H(p)/η

which is the negative entropy function. By Lemma 5.7, R is 1/η strongly convex w.r.t the `1
norm.

Now, the loss functions in this case are simply linear functions ft(x) = lttx where we can
assume that |lt|∞ ≤ 1. We have by Holder’s inequality,

|ft(x)− ft(y)| = |lTt (x− y)| ≤ |lt|∞|x− y|1 ≤ |x− y|1.

This means that ft is 1 Lipschitz w.r.t the `1 norm. Hence, we can apply Theorem 5.9.

So we have the following regret bound:

Regret(u) ≤ R(u)− min
p∈Sn

(−1

η
H(p)) + Tη

≤ max
p∈Sn

(
1

η
H(p)) + Tη

=
log n

η
+ Tη

≤ 2
√
T log n.

(47)

where in the second inequality we used R(u) < 0, in the equality step we used the fact
that entropy is maximized for the uniform distribution equal to log n and in the last step we
plugged in the optimal value of the tuning parameter η. We see that we recover the Hedge
bound. This is not a coincidence as this FTRL algorithm is actually equivalent to the Hedge
algorithm!
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Lemma 5.10. For the experts advice problem, The FTRL algorithm with the regularizer R(p) =

−H(p)/η is equivalent to the Hedge algorithm.

Proof. The proof is left as an exercise.

Remark 5.6. We see that both Online Gradient Descent and Hedge are instances of FTRL with
different regularization functions.

6 Online Mirror Descent (OMD)

One possible disadvantage of the FTRL method is that at each round we have to potentially solve a
big optimization problem. A natural question is whether we can define updates which are local in
nature in the sense that the updates only depend on the information at the current point. The FTRL
updates, the way they are defined, consider the entire history to construct the next update. In this
section, we consider another online convex optimization algorithm which is called online mirror
descent (OGD). This method can be viewed as a generalization of online gradient descent. We will
see that this method enjoys similar regret bounds as FTRL but the update step is local.

6.1 Gradient Descent Update as Regularized Optimization

To motivate OMD, let’s recall the offline unconstrained gradient descent, with the update rule
xt+1 = xt − η∇f(xt). We can also view this rule as a solution of the optimization problem

xt+1 = arg min
x
f(xt) + (∇f(xt))

T (x− xt) +
1

2η
|x− xt|22

= arg min
x

(∇f(xt))
Tx+

1

2η
|x− xt|22.

(48)

If the domain is some specified convex set K, then it is not hard to see (left as an exercise!) that the
related optimization problem above will give the solution xt+1 = PK(xt − η∇f(xt)), where PK(·)
is the Euclidean projection function to K. Then the way to generalize gradient descent to mirror
descent is to observation that instead of the penalty |x−xt|22/2η we can use a more general penalty
function. Before giving further specifics, we firstly introduce the notion of Bregman divergence.

Definition 6.1. Assume h is a strictly convex function on convex setK. Then we define the Bregman
divergence of h from y to x as

Dh(y|x) := h(y)− h(x)− (∇h(x))T (y − x). (49)

Remark 6.1. From the above definition, the Bregman divergence corresponding to a convex func-
tions is just the difference between h(y) and the value at y of the linear approximation of h at x. We
can think of this as defining a notion of distance between y and x although this is not neccessarily
symmetric.
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Example. If h(x) = |x|22/2, then Dh(y|x) = |y − x|22/2. (Check!)

Example. Consider the negative entropy function h(p) =
∑

i(pi log pi) defined on the probabil-
ity simplex Sn. Then Dh(q|p) = KL(q, p), where KL(q, p) is the Kullback Leibler divergence
KL(q, p) =

∑
i qi log qi

pi
. (Exercise!)

From the first example, we see that the penalty function defining the Gradient Descent update
|x−xt|22/2η is a Bregman divergenceDh(x|xt), if we take h(x) = |x|22/2η. This naturally suggests
using a general Bregman divergence as a penalty term which then gives us the way to generalise
gradient descent to mirror descent.

Definition 6.2. Given a convex function h : K → R for a convex set K ⊂ Rn, let us define
(projected) Online Mirror Descent with the following update rule:

xt+1 = arg min
x∈K
{η(∇f(xt))

Tx+Dh(x|xt)},

To see the rule more explictly, we first consider the unconstrained caseK = Rn, which implies
that we can take the gradient and set it to zero:

η∇f(xt) +∇h(x)−∇h(xt) = 0 =⇒ ∇h(xt+1) := ∇h(x) = ∇h(xt)− η∇f(xt).

Then to get back xt+1, we just take the inverse map of∇h (will exist under regularity conditions on
h; e.g. strong convexity of h), and write

xt+1 = (∇h)−1(∇h(xt)− η∇f(xt)). (50)

Regarding our two running examples of convex functions h, it turns out that we recover both
OGD and Hedge as the corresponding OMD algorithms. We leave this as an exercise.

Now we give a regret bound for the online mirror descent algorithm.

Theorem 6.3. [OMD Regret Bound] Assume the function h : K → R is α−strongly convex on the
convex set K w.r.t. a norm | · |. Let x0, x1, . . . be the OMD iterates with step size η. Then we have
the upper bound for the regret∑

(ft(xt)− ft(x∗)) ≤
Dh(x∗|x1)

η
+ η

∑
|∇ft(xt)|2∗

2α
, (51)

where | · |∗ is the dual norm of | · |.

Proof. For simplicity, we will only give the proof for the unconstrained case K = Rn.

The proof is a potential based proof where our potential function is going to be φt = 1
ηDh(x∗, xt).
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Then,

φt+1 − φt =
1

η
{h(x∗)− h(xt+1)−∇h(xt+1)(x∗ − xt+1)

− h(x∗) + h(xt) +∇h(xt)(x
∗ − xt)}

=
1

η
(h(xt)− h(xt+1) +∇h(xt)(xt+1 − xt)) +∇ft(xt)(x∗ − xt+1)

≤ − α

2η
|xt+1 − xt|2 +∇ft(xt)(x∗ − xt+1),

where we get the second equality using the update rule (50), and we get the inequality because of
the α−strongly convexity of h. Now,

ft(xt)− ft(x∗) + φt+1 − φt

≤ ft(xt)− ft(x∗)−
α

2η
|xt+1 − xt|2 +∇ft(xt)(x∗ − xt+1)

= −(ft(x
∗)− ft(xt)−∇ft(xt)(x∗ − xt))

+∇ft(xt)(xt − xt+1)− α

2η
|xt+1 − xt|2

≤ ∇ft(xt)(xt − xt+1)− α

2η
|xt+1 − xt|2

≤ |∇ft(xt)|∗|xt − xt+1| −
α

2η
|xt+1 − xt|2

≤ η

2α
|∇ft(xt)|2∗ +

α

2η
|xt+1 − xt|2 −

α

2η
|xt+1 − xt|2

=
η

2α
|∇ft(xt)|2∗,

(52)

where the first inequality is due to the previous display, the second inequality is due to the convexity
of ft, the third follows by definition of dual norm, the fourth is simply the AM GM inequality.

So we have
ft(xt)− ft(x∗) ≤ φt − φt+1 +

η

2α
|∇ft(xt)|2∗. (53)

Take the sum, and discard the −φT+1 term, then we get the result.

Remark 6.2. The proof in the general constrained case can be obtained similarly as above except
that we have to use the general KKT condition characterizing the optima xt+1. This is left as an
exercise.

7 Optimistic FTRL

The results we have seen in Online Learning hold for any sequence of convex loss functions. This
makes the results very general. However, this generality comes at the cost that the results are
often worst case. Hence, a major theme is to develop adaptive regret bounds that adapt to easier
problems. One such easy and possible practically relevant case is when the loss function sequence
changes gradually. Such a situation motivates the next algorithm we will study, a variant of FTRL
called the Optimistic FTRL. This was proposed by Rakhlin and Sridharan [27].
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7.1 Optimistic FTRL: Definition and Regret Bounds

As we know, to derive regret bounds it is enough to consider linear losses. Hence, for this section,
we will assume that we are in an Online Linear Optimization (OLO) framework. So, let’s say the
loss functions are of the form ft(x) = lTt x. FTRL updates take the following form:

xt = arg min
x∈K

T−1∑
t=1

lTt x+
1

η
R(x),

where R(x) is a convex function which acts as a regularizer.

Suppose, at the beginning of round t we knew lt before playing xt. Then we should play

x′t = arg min
x∈K

t−1∑
t=1

lTt x+
1

η
R(x) + lTt x =: F ′T (x).

The above algorithm can be called the one step lookahead algorithm. Now, this one step
lookahead algorithm would have regret bounded by maxx∈K R(x)−minx∈K . This can be proved
by similar arguments as in the proof of Lemma 5.1. We leave this as an exercise.

This suggests that if we could estimate lt beforehand we could use the one step lookahead
algorithm. Thus, if mt is a good guess of lt, we should turn to the optimization problem

xt = arg min
x∈K

t−1∑
t=1

lTt x+
1

η
R(x) +mT

t x =: Ft−1(x). (54)

This is called optimistic FTRL algorithm (with m0 = 0). We know FTRL has regret O(
√
T ). We

desire that FTRL algorithm would have smaller regret when mt ≈ lt but not be too much worse
than FTRL if mt is not predictive of lt. In fact, we have the following result.

Theorem 7.1. The updates {xt}Tt=1 by optimistic FTRL satisfies for any u ∈ K,

T∑
t=1

(xt − u)T lt ≤
R(u)

η
−min
x∈K

R(x)

η︸ ︷︷ ︸
RangeTerm

+

T∑
t=1

(xt − x′t)T (lt −mt)︸ ︷︷ ︸
StabilityTerm

−
T∑
t=1

DR(xt, x
′
t−1) +DR(x′t, xt)

η︸ ︷︷ ︸
CurvatureGainTerm

for any u ∈ K. Here, DR is the Bregman divergence associated with R.

Remark 7.1. The above bound holds for any convex regularizer R. Later on, we will see a more
streamlined result when R is strongly convex. The main thing to look at in the above bound is the
presence of lt −mt in the second term. This indicates a better bound when mt is close to lt. The
third term involves Bregman divergences and is negative. So we could drop this term for the moment
although this term will be crucial for us when we look at applying this result to zero sum games.
This term can be thought of as the gain due to the curvature of R.
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Note that if we set mt = 0 then xt becomes the usual FTRL play. Then x′t = xt+1 and hence
we can use the above theorem to derive a regret bound for usual FTRL which is a slightly improved
version of Lemma 5.3.

Corollary 7.2. The updates {xt}Tt=1 of usual (linearized) FTRL satisfies for any u ∈ K,

T∑
t=1

(xt − u)T lt ≤
R(u)

η
−min
x∈K

R(x)

η︸ ︷︷ ︸
RangeTerm

+
T∑
t=1

(xt − xt+1)T lt︸ ︷︷ ︸
StabilityTerm

−
T∑
t=1

DR(xt+1, xt)

η︸ ︷︷ ︸
CurvatureGainTerm

for any u ∈ K.

To prove Theorem 7.1, we need to introduce several lemmas.

Lemma 7.3 (Stability). For i = 1, 2, let Fi(x) = LTi x + R(x) with optimizer and optimal values
(x∗i , V

∗
i ) where R is a convex function defined on K. Then, we have

V ∗2 − V ∗1 ≤ (L2 − L1)Tx∗1 −DR(x∗1, x
∗
2),

This is a stability of optimal value result. Moreover, if R is 1/η strongly convex w.r.t a norm ‖.‖,
then we have

‖x∗1 − x∗2‖2 ≤ η(x∗1 − x∗2)T (L2 − L1)

and hence

‖x∗1 − x∗2‖ ≤ η‖(L2 − L1)‖∗

which shows the stability of the optimizer under strong convexity. Here ‖.‖∗ represents the dual
norm of ‖.‖.

Proof. By convexity of F and the first order optimality criterion, we have for any x ∈ K,

Fi(x)− Fi(x∗i )−DFi(x, x
∗
i ) = ∇Fi(x∗i )T (x− x∗i ) ≥ 0.

This implies

V ∗2 − V ∗1 = F2(x∗2)− F1(x∗1)

≤ F2(x∗1)−DF2(x∗1, x
∗
2)− F1(x∗1)

= (L2 − L1)Tx∗1 −DR(x∗1, x
∗
2).

This shows the stability of the optimal value. Now, in case R is 1/η strongly convex, we have
DR(y, x) ≥ 1

2η‖y − x‖
2. Plugging this in the above inequality we get,

V ∗2 − V ∗1 ≤ (L2 − L1)Tx∗1 −
1

2η
‖x∗1 − x∗2‖2.
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By symmetry, we also get the inequality

V ∗1 − V ∗2 ≤ (L1 − L2)Tx∗2 −
1

2η
‖x∗1 − x∗2‖2.

Add the last two displays to obtain

‖x∗1 − x∗2‖2 ≤ η(x∗1 − x∗2)T (L2 − L1).

Now, we are ready to prove our main regret bound.

Proof of Theorem 7.1. The main theme of this proof is to compare the one step lookahead updates
with the optimistic FTRL updates. To this end, let us define the functions

Ft−1(x) = (

t−1∑
i=1

li +mt)
tx+

R(x)

η
.

F
′
t (x) = (

t−1∑
i=1

li + lt)
tx+

R(x)

η
.

Then, recalling the definition of xt and x′t we see that they are the optimizers of Ft−1 and F
′
t .

Let us also denote the optimal values of Ft and F
′
t by Vt and V

′
t respectively.

By using the stability of optimal value result in Lemma 7.3 we have

V ′t−1 − Vt−1 ≤ −mT
t xt −

1

η
DR(xt, x

′
t−1)

Vt−1 − V ′t ≤ (mt − lt)Tx′t −
1

η
DR(x′t, xt).

Summing these two inequalities yields

lTt xt ≤ V ′t − V ′t−1 + (mt − lt)T (x′t − xt)−
DR(xt, x

′
t−1) +DR(x′t, xt)

η
.

This implies

T∑
t=1

lTt xt ≤ V
′
T − V

′
0 +

T∑
t=1

(mt − lt)T (x′t − xt)−
T∑
t=1

DR(xt, x
′
t−1) +DR(x′t, xt)

η

Now, by definition,

V
′
T − V

′
0 =

T∑
t=1

lTi x
′
t +

R(x
′
t)

η
−min
x∈K

R(x)

η
≤

T∑
t=1

lTi u+
R(u)

η
−min
x∈K

R(x)

η

for any u ∈ K.

Combining the last two displays finishes the proof.
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Now let’s state a corollary of Theorem 7.1 in case R is 1 strongly convex.

Corollary 7.4. The updates {xt}Tt=1 by optimistic FTRL with a 1 strongly convex (w.r.t a norm ‖.‖)
regularizer K satisfies for any u ∈ K,

T∑
t=1

(xt − u)T lt ≤
T∑
t=1

(xt − u)T lt ≤
R(u)

η
−min
x∈K

R(x)

η︸ ︷︷ ︸
RangeTerm

+ η

T∑
t=1

‖lt −mt‖2∗︸ ︷︷ ︸
StabilityTerm

− 1

4η

T∑
t=2

‖xt − xt−1‖2︸ ︷︷ ︸
CurvatureGainTerm

Proof. To bound the stability term from Theorem 7.1 we just use the stability of optimizer result
from Lemma 7.3. To bound the gain term due to curvature, note that

T∑
t=1

DR(xt, x
′
t) +DR(xt, x

′
t+1)

η
≥ 1

2η

T∑
t=1

(‖xt − x′t‖2 + ‖xt − x
′
t+1‖2) ≥

1

2η

T∑
t=2

‖xt − x′t‖2 +
1

2η

T−1∑
t=1

‖xt − x
′
t+1‖2 =

1

2η

T∑
t=2

(‖xt − x′t‖2 + ‖x′t − xt−1‖2) ≥

1

4η

T∑
t=2

(‖xt − x′t‖+ ‖x′t − xt−1‖)2 ≥ 1

4η

T∑
t=1

(‖xt − xt−1‖)2

where in the first inequality we used the strong convexity of R, in the second inequality we dropped
some terms and reindexed the summation, in the third inequality we used a2 + b2 ≥ 1/2(a + b)2

and in the fourth inequality we used the triangle inequality.

Remark 7.2. Ignoring the curvature gain term for now, we see that in Corollary 7.4, by setting η

optimally, we get a regret bound of order O(
√
Range

∑T
t=1 ‖lt −mt‖2∗). If ‖lt‖∗ is bounded and

hence ‖mt‖∗ is also bounded then we see that in the worst case we get a O(
√
T ) regret bound with

atmost a constant factor worse off. However, when mt is predictive of lt, that is when
∑T

t=1 ‖lt −
mt‖2∗ = o(T ) we can get a much better bound. Similar to before, one can set a time varying tuning
parameter ηt =

√
R∑t−1

i=1 ‖li−mi‖2∗
and still obtain a similar guarantee as in Corollary 7.4.

Remark 7.3. What can we set mt to be? We can in fact think of this problem as another online
learning problem where we can set the loss function to be ‖lt −mt‖2∗. So one can use any online
learning algorithm to set mt. One natural choice is to set mt = lt−1. Then we obtain a regret

bound of order O(
√
Range

∑T
t=1 ‖lt − lt−1‖2∗). The quantity ‖lt− lt−1‖2∗ is called the path length

variation of the loss vectors lt. We will use this choice of mt and the full strength (including the
curvature gain term) of Corollar 7.4 in Section 7.3.

7.2 Application to Zero Sum Games

A zero sum two player game is a game defined by a payoff matrix G ∈ [0, 1]m×n where we have
assumed the [0, 1] range for simplicity. There are m possible actions for the row player and n
possible actions for the column player. For each pair of actions (i, j) the row player incurs a loss
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(and the column player enjoys a gain) given byG[i, j]. For example, in the rock paper scissors game
the payoff matrix G could be of the following form:

G3×3 =

1/2 1 0

0 1/2 1

1 0 1/2


where the actions (for both the players) are Rock, Paper and Scissors respectively.

Remark 7.4. Not all two player games are zero sum games. In general, both players have a
payoff matrix G1, G2 representing their losses respectively. Zero sum games are special cases
where G2 = −G1. In this section, we will stick to discussing zero sum games only.

The players might play a mixed strategy over the possible actions which is represented by a
probability vector. The interpretation is that the row player samples from his/her possible actions
following a distribution and similarly the column player does so independently of the row player..
For example, the row player can play a mixed strategy given by p ∈ ∆m and the column player
can play a mixed strategy given by q ∈ ∆n. Then the expected loss for the row player is G(p, q) =

pTGq.

Definition 7.5. The pair of mixed strategies (p, q) is called the Nash equilibrium if G(p, q′) ≤
G(p, q) ≤ G(p′, q), ∀p′ ∈ ∆m,∀q′ ∈ ∆n.

For instance, in the rock paper scissor game discussed in the last lecture, one can verify that
the unique Nash equilibrium is p = q =

(
1
3 ,

1
3 ,

1
3

)
.

Another natural concept in Games is called the minimax solution (or maximin solution).

Definition 7.6.

p∗ = argmin
p

max
q
G(p, q)

q∗ = argmax
q

min
p
G(p, q)

Here p∗ and q∗ are the least loss and largest reward respectively that the players can hope for if the
other player plays second and plays optimally. (p∗, q∗) together is called a minimax solution of the
game.

It is intuitive that playing second should be advantageous which can be shown by the following
lemma.

Lemma 7.7.

min
p

max
q
G(p, q) ≥ max

q
min
p
G(p, q)
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Proof. The L.H.S is the least possible loss if the row player plays first and the R.H.S is the least
possible loss if the row player plays second. Therefore, this lemma should hold. We must have for
all p, q,

G(p, q) ≥ min
p
G(p, q).

Therefore, taking max over q now gives for all p,

max
q
G(p, q) ≥ max

q
min
p
G(p, q).

Finally, taking the minimum over p on the L.H.S above finishes the proof.

Perhaps surprisingly, the reverse inequality also holds for the zero sum games and the two
values are exactly equal for a zero sum game. This is called the Von Neumann’s minimax theo-
rem.

Theorem 7.8 (Von Neumann’s Minimax Theorem). For any two player zero sum game with G ∈
[0, 1]N×M , we have

min
p

max
q
G(p, q) = max

q
min
p
G(p, q)

We will prove Von-Neumann’s minimax theorem using online learning in a bit, but for now let
us discuss the relationship between the Nash equilibrium and the minimax solution.

Theorem 7.9. A pair of mixed strategies (p∗, q∗) is a Nash equilibrium if and only if it is also a
minimax solution and G(p∗, q∗) is called the value of the game.

Proof. Let (p∗, q∗) be a Nash equilibrium, then by definition of Nash equilibrium, and optimality,
we have

min
p

max
q
G(p, q) ≤ max

q
G(p∗, q) = G(p∗, q∗) = min

p
G(p, q∗) ≤ max

q
min
p
G(p, q)

Now, by the minimax theorem 7.8, the above inequalities are actually equalities. Thus, (p∗, q∗) is
also the minimax solution.

For the reverse direction, suppose (p∗, q∗) is a minimax solution. Then,

min
p

max
q
G(p, q) = max

q
G(p∗, q) ≥ G(p∗, q∗) ≥ min

p
G(p, q∗) = max

q
min
p
G(p, q).

By the minimax theorem again, the above inequalities are actually equalities which mean that
(p∗, q∗) is a Nash equilibrium.

We are now going to provide a proof of the minimax theorem. The original proof is quite
different and relies on fixed point theorems. The following proof uses online learning techniques.
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Proof of Von Neumann’s Minimax Theorem. It is enough to prove that minp maxq G(p, q) ≤ maxq minpG(p, q).
From the row player’s point of view, we can run the following repeated game:
For rounds t = 1, 2, ..., T ,

1. Row player plays pt.

2. Row player observes the loss vector lt = Gqt ∈ Rm.

3. Row player incurs loss lt.pt = G(pt, qt)

The row player in any round has m possible actions to randomize and choose from. To do so
the row player can use any online learning algorithm. To be concrete, let’s say that the row player
uses the Hedge algorithm. Suppose the online algorithm has regret Row regret, then it implies that

1

T

T∑
t=1

G(pt, qt) = min
p

1

T

T∑
t=1

G(p, qt) +
Row regret

T

= min
p
G(p, q̄) +

Row regret

T
(Define q̄ :=

1

T

T∑
t=1

G(p, qt))

≤ max
q

min
p
G(p, q) +

Row regret

T
(55)

Thus, if the regret is sublinear, then for very large T , the average loss of the row player is close
to the value of the game.

Similarly, from the column player’s point of view, since −G gives the loss we have

1

T

T∑
t=1

−G(pt, qt) = min
q

1

T

T∑
t=1

−G(pt, q) +
Col regret

T
.

Therefore, we can write

1

T

T∑
t=1

G(pt, qt) = max
q

1

T

T∑
t=1

G(pt, q)−
Col regret

T

= max
q
G(p̄, q)− Col regret

T
(Define p̄ :=

1

T

T∑
t=1

G(pt, q))

≥ min
p

max
q
G(p̄, q)− Col regret

T
. (56)

Combining Eq. 55 and 56, and letting T →∞ we obtain

min
p

max
q
G(p, q) ≤ max

q
min
p
G(p, q)

which when combined with Lemma 7.7 finishes the proof.
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Remark 7.5. Running Hedge for both the row player and the column player actually provides us
an algorithm to find an approximate Nash equilibrium. This can be seen by combining Eq. 55 and
56, and defining εrow := Row regret

T , εcol := Col regret
T to get

min
p
G(p, q̄) + εrow = max

q
G(p̄, q)− εcol

max
q
G(p̄, q) = min

p
G(p, q̄) + ε (ε := εrow + εcol)

≤ G(p̄, q̄) + ε

Similarly,

min
p
G(p, q̄) = max

q
G(p̄, q)− ε

≥ G(p̄, q̄)− ε

Thus, p̄, q̄ is an ε-approximate Nash equilibrium pair. Since the Nash equilibrium and Minimax
solutions are identical for a zero sum game, we get approximate mini-max solution too through
online learning. Note that by the regret bound for Hedge (2.4), we have ε = O(1/

√
T ). In the next

section, we will see that we can actually make the convergence rate as fast as O(1/T ) if we use
Optimistic Hedge instead of Hedge.

7.3 When Both Players run Optimistic Hedge Algorithm

Now let us consider the case when both the row player and the column player uses the following
Optimistic Hedge algorithm to choose pt, qt in every round,

pt(i) ∝ exp

(
−η

(
lt−1(i) +

∑
s<t

ls(i)

))

qt(i) ∝ exp

(
−η

(
l
′
t−1(i) +

∑
s<t

l
′
s(i)

))

where ls(i) = G(i, qs), l
′
s(i) = G(ps, i). As we have seen before, pt are the updates ofOptimistic

FTRL,where K is the probability simplex in Rm, the regularizer is 1/η times the negative entropy
function which is 1 strongly convex w.r.t the `1 norm; see Lemma 5.7, and mt = lt−1. Similar
statement holds for qt.

Theorem 7.10 (Fast Rate for Convergence to Nash Equlibrium). In a zero sum game with payoff
matrix G ∈ [0, 1]m×n, if both plays optimistic hedge as defined above, then with η = 1

4 , the total
regret (look at the notation in Remark 7.5):

ε = εrow + εcol = O (log(NM))

and hence (p̄, q̄) is an approximate Nash Equilibrium with error O
(
log(NM)

T

)
.
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Proof. By Corollary 7.4 and the fact that `∞ is the dual norm to `1 we have the following regret
bound for the row player:

εrow ≤
logM

η
+ η

T∑
t=1

|lt − lt−1|2∞ −
1

4η

T∑
t=1

|pt − pt−1|21.

Now, here the negative term above in the regret bound will actually come in handy. Note that
we have

|lt − lt−1|∞ = max
i
|G(i, qt)−G(i, qt−1)|

= max
i
|G[i, ·]T (qt − qt−1)|

≤ |qt − qt−1|1.

Therefore, by taking l0 = 0,

Tεrow ≤
logM

η
+ η + η

T∑
t=2

|qt − qt−1|21 −
1

4η

T∑
t=1

|pt − pt−1|21. (57)

Exactly the same argument applies to the column player, so we get

Tεcol ≤
logN

η
+ η + η

T∑
t=2

|pt − pt−1|21 −
1

4η

T∑
t=1

|qt − qt−1|21 (58)

We can now sum (57) and (58), to get

ε ≤ logMN

η
+ 2η + (η − 1

4η
)
T∑
t=2

(
|pt − pt−1|21 + |qt − qt−1|21

)
Setting η = 1

4 , we have

ε ≤ 4 logMN − 1

4

T∑
t=2

(
|pt − pt−1|21 + |qt − qt−1|21

)
(59)

and now we can drop the negative term to finish the proof.

Remark 7.6. Actually one can show that both εrow, εcol are O (log(MN)) which does not follow
from their sum being O (log(MN)) as one of them could be negative. To see this, first note that

ε = max
q
G(p̄, q) + min

q
G(p̄, q) ≥ G(p̄, q̄)−G(p̄, q̄) ≥ 0

where the first equality is by the second display in Remark 7.5. Therefore, combining this with (59),
we get that

T∑
t=2

|pt − pt−1|21 + |qt − qt−1|21 ≤ O(logMN).

This confirms our intuition that the plays of the row player or the column player enjoy an inherent
stability property; the total movement of the plays is bounded by O(1) in the above sense. This is
precisely why we can hope to have faster rate of convergence than O(1/

√
T ). The above display

can now be combined with (57) to get εrow = O(logMN)/T and one can argue similarly for εcol.
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8 Online Learning in Non-Stationary Environments

So far, we have used the notion of regret

Regret =
∑
t

ft(xt)−min
x∈K

∑
t

ft(x).

Here, the regret is small means that our total loss is small compared to the best action in hindsight.
However, in cases when there is no overall good single action this notion of regret is not meaningful.
Consider the following example:

Example 8.1. There are 2 experts.

• expert 1:

– incurs 0 loss for first half T2
– incurs 1 loss for second half T2

• expert 2:

– incurs 1 loss for first half T2
– incurs 0 loss for second half T2

We see that the overall loss of both the experts is T/2. If we run the Hedge algorithm, the
regret guarantee in Theorem (2.4) then ensures that our total loss is at most T/2 + O(

√
T ) which

is rather disappointing. Infact, this is not just a case of our upper bound being loose. Note that
the cumulative loss of the second expert is always more than that of the first expert. Therefore, the
Hedge algorithm will put weight atleast 1/2 to the first expert always.This means that in the last
T/2 rounds, the expected loss per round is atleast 1/2 which gives atleast T/4 loss in expectation.

Ideally in a case like above, we would like an algorithm to have small regret on all intervals
simultaneously. Given an algorithm A, for an interval I ⊂ [T ], define

RegretA(I) =
∑
t∈I

ft(xt)−min
x∈K

∑
t∈I

ft(x)

We would like
RegretA(I) ≤ O(

√
|I|) (60)

for all intervals I simultaneously.

Question: Does an algorithm exist which satisfies (60)? The answer is yes!

If we could obtain such an algorithm, then in our example above we can ensure that in both
the first half and the second half of the rounds, the regret is separately of O(

√
T ). This means the

total loss of the algorithm is also of O(
√
T ).

Intuitively, the problem faced by the Hedge algorithm in our example is that it considers the
entire history. We need an algorithm that quickly recognizes that the best expert has changed. If we
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knew the exact time of change, we could restart the Hedge algorithm, forget the past history and
this would serve our purpose.

A natural idea might be to consider the Hedge algorithm restarted from all possible time points
r ∈ [T ]. Let’s call these algorithms {Ar : r ∈ [T ]}. Then, in round t, before playing we will have
t algorithms A1, . . . ,At providing their predictions. We can consider these as experts and try to
aggregate their predictions. Thus, we are faced with another layer of an expert problem. The only
difference is that the number of experts keeps growing in every round. It turns out we can handle
such cases by a general framework called the Sleeping Experts framework. We will see that the
general Sleeping Experts Aggregation Algorithm (SAA) will satisfy (60). This is the content of the
next section.

8.1 Sleeping Experts Framework

The sleeping experts framework is as follows. This is a variant of the experts problem and was
introduced by Freund et al. [13]. Here, the main difference with the usual experts setup is that each
expert can abstain to provide any prediction.

Consider an Online Convex Optimization problem with action space K. Let there be a set of
N experts. The protocol is as follows. For every round t ∈ [T ],

• Each expert S ∈ [N ] either provides a prediction xS,t ∈ K or abstains. Let At ⊂ [N ] define
the set of active experts in round t; those who provide their predictions.

• Then the learner plays xt based on the recommendations of the active experts.

• The loss function ft : K → R is revealed and the learner incurs the loss ft(xt).

In this framework, we desire that we suffer as small a regret as possible against any expert on
the rounds that it was active. Specifically, we define

Definition 8.2. Let R(S) denote the regret against expert S defined as follows:

R(S) =
∑
t:S∈At

ft(xt)− ft(xS,t)

In this framework, we would like R(S) uniformly small for all experts S.

8.2 Sleeping Experts Algorithm

The sleeping experts aggregation algorithm (SAA) is defined as follows; this version is based
on [11]. The algorithm maintains a probability distribution w(1) over the experts. Initialize with
wS,1 = 1/N for all experts S.

For every round t = 1, . . . , T ,
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1. Nature/Adversary reveals the set of active experts At.

2. The learner plays
xt =

∑
s∈At

wS,t∑
s∈At wS,t

xS,t.

3. Nature/Adversary reveals the loss function ft.

4. Update the weights so that

•
wS,t+1 = wS,t ∀S /∈ At.

•
wS,t+1 =

wS,t exp(−αft(xS,t))∑
S∈At wS,t exp(−αft(xS,t))

∑
s∈At

wS,t ∀S ∈ At

To describe the algorithm in words, in every round the learner maintains a probability weight
vector for the experts. In each round t, the learner plays the conditional mean of the experts pre-
dictions; conditioned on the active experts At. After observing the loss of the active experts in that
round, then the weights of those active experts are updated with a multiplicative exponential factor
and renormalizing so that the total weight of the active experts remain the same. The following is
the main regret guarantee for the SAA algorithm.

Theorem 8.3 (SAA Algorithm Competitive against Any Expert: General Convex Losses). Consider
the sleeping experts setting. Suppose the loss functions ft are convex and take values in [0,M ]. Then
for the SAA algorithm with tuning parameter α, we have the regret bound against any fixed expert
S, ∑

t:S∈At

ft(xt) ≤
αM

1− exp(−αM)

∑
t:S∈At

ft(xS,t) +
M logN

1− exp(−αM)
.

Proof. Fix an expert S and a a round 1 ≤ t ≤ T where expert S ∈ At is active. Then we can write:

log(wS,t+1)− log(wS,t) = −log(wS,t) + log(
wS,te

−αft(xS,t)∑
S∈At e

−αft(xS,t)wS,t
) + log(

∑
S∈At

wS,t)

≥ −αft(xS,t)− log(
∑
S∈At

wS,t[1− (1− e−αM )
ft(xS,t)

M
]) + log(

∑
S∈At

wS,t)

= −αft(xS,t)− log(1− CM
∑

S∈At ft(xS,t)wS,t∑
S∈At wS,t

)

≥ −αft(xS,t)− log(1− CMft(xt))

≥ −αft(xS,t) + CMft(xt)

(61)

where CM = 1−e−αM
M .
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In the above, the first inequality follows from using the following inequality which holds for
all x ∈ [0,M ],

e−αx ≤ 1− (1− e−αM )
x

M
.

The best way to see it is perhaps that by rearranging to get

x

M
≤ 1− e−αx

1− (1− e−αM )

and then noting that both the L.H.S and the R.H.S are 0 at 0 and 1 at M ; the L.H.S is a linear
function and the R.H.S is a concave function.

In (61), the second inequality follows due to convexity of ft and Jensen’s inequality; the third
inequality follows by using the elementary inequality −log(1− x) ≥ x for 0 < x < 1.

Now, we can sum (61) over all the rounds {t : S ∈ At} to obtain,

∑
t:S∈At

ft(xt) ≤
1

CM

T∑
t=1

(log(wS,t+1)− log(wS,t)) +
α

CM

∑
t:S∈At

ft(xS,t) ≤

M logN

1− exp(−αM)
+

αM

1− exp(−αM)

∑
t:S∈At

ft(xS,t).

In the first inequality above, we used the fact that wS,t+1 = wS,t for t such that S /∈ At and
in the second inequality we telescoped the sum and used the fact that w1 is the uniform distribution
over the set of all experts.

Remark 8.1. Note that the constant αM
1−exp(−αM) is always bigger than 1.We can make this constant

as close to 1 as possible by taking α close to 0 with the caveat that the coefficient of logN blows up
as 1/α. We can make this constant actually equal to 1 if we additionally assume the loss functions
ft are exp-concave. This is the content of the next theorem.

Theorem 8.4 (SAA Algorithm Competitive against Any Expert: Exp-Concave Losses). Consider
the sleeping experts setting. Suppose the loss functions ft are convex and take values in [0,M ].

Then for the SAA algorithm with tuning parameter α, we have the regret bound against any fixed
expert S, ∑

t:S∈At

ft(xt) ≤
∑
t:S∈At

ft(xS,t) +
logN

α
.

Proof. Let us fix any expert S and any time t such that S ∈ At. By exp-concavity of ft we can start
with

e−αft(xt) ≥
∑
S∈At

ŵS,te
−αft(xS,t)

where ŵS,t = wS,t/
∑

S∈At wS,t. Taking log,

αft(xt) ≤ −log(
∑
S∈At

ŵS,te
−αft(xS,t))
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and equivalently,

ft(xt)− ft(xS,t) ≤
1

α
[−log(

∑
S∈At

ŵS,te
−αft(xS,t)) + log(e−αft(xS,t))]

=
1

α
log

e−αft(xS,t)∑
S∈At ŵS,te

−αft(xS,t)

=
1

α
log(

wS,t+1

wS,t
)

(62)

Summing over t such that S ∈ At and noting that wS,t = wS,t+1 for t such that S /∈ At we get,

∑
t:S∈At

[ft(xt) − ft(xS,t)] ≤
T∑
t=1

1

α
log(

wS,t+1

wS,t
) =

1

α
(log(wS,T+1)− log(wS,1)) ≤ 1

α
logN.

8.3 Sleeping Experts as a Meta Algorithm

The sleeping experts (SAA) algorithm can be thought of as a meta algorithm which can be used
on top of any OCO algorithm A. Suppose we have an OCO problem where A is a good algorithm
like the Hedge algorithm for the vanilla experts problem. We can now use the SAA algorithm to
guarantee (60). For any interval I = [e, s] ⊂ [T ], let us denote A[e,s] to denote the algorithm
A started from time point r, i.e, it starts predicting from time e onwards and only uses data from
time e onwards as well and is only run till time s. This can be framed in the sleeping experts
framework where N = T 2 and experts correspond to algorithms {AI : intervals I ⊂ [T ]}. At
round 1 ≤ t ≤ T , the active set consist of experts corresponding to intervals At = {I : t ∈ I}.
Then, the regret guarantees in Theorems 8.3, 8.4 establish that for any interval I ⊂ [T ],

s∑
t=e

ft(xt) ≤ Const.
s∑
t=r

ft(xA[e,s],t) +O(log T ).

In the case when the loss functions ft are exp-concave the Const factor is 1 and then we can
write
s∑
t=e

ft(xt)−min
x∈K

∑
t∈I

ft(x) ≤
s∑
t=r

ft(xA[e,s],t)−min
x∈K

∑
t∈I

ft(x)+O(log T ) = RegretA(I)+O(log T ).

The above regret bound holds simultaneously for all intervals I the desire of which motivated this
entire section.

8.4 Application to Online Signal Denoising

We will now give an application of the SAA algorithm to online signal denoising. For the sake of
simplicity, our signal is going to be either a vector in Rn or a matrix in Rn×n. Let Ld,n = [n]d

where d = 1 or 2.
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Consider the following protocol for rounds t = 1, . . . , T :

1. Adversary reveals ρ(t) ∈ Ld,n.

2. Learner predicts ŷρ(t).

3. Adversary reveals yρ(t) or equivalently, a loss ft(x) = (x− yρ(t))
2.

This problem falls under the OCO framework with K = R or the range of y and T = Ld,n.
The sequence of indices revealed ρ(t) could be adversarially chosen and is a permutation of the
indices in Ld,n. For example, when d = 1 and ρ(t) = t; this is the forecasting problem.

One of the most basic algorithms in this case is perhaps the running mean algorithm which
predicts

ŷρ(t) =
1

t− 1

t−1∑
i=1

yρ(i).

The usual regret for this problem would be

T∑
t=1

(ŷt − yt)2 −
T∑
t=1

(yt − ȳt)2 ≤ O(log(n))

where the above inequality follows from the following Lemma 5.2.

Lemma 8.5. For any sequence of numbers x ∈ Rn we have

n∑
i=1

(x̄1:i−1 − xi)2 ≤
n∑
i=1

(x̄− xi)2 + 4(1 + log(n))

where x̄1:0 = 0.

This notion of regret competes against all constant sequences. What if we want to compete
against the best k ≥ 1 piecewise constant sequence? To do this, we can use the running mean
algorithm as a base algorithm and sleeping experts on top of it.

For the subsequent discussion, for the sake of exposition assume n is a power of 2 (although this
is not necessary). We can define dyadic intervals (subset of [n]) to be of the form [(a− 1)2s, a2s] ⊂
[n] for non negative integers a, s. In the 2D case, we can define a dyadic rectangle as a product of
two dyadic intervals.

We further define for any round t ∈ [T ], the set of active experts as corresponding to those
dyadic intervals I containing t; i.e At = {Dyadic I : I ⊃ {ρ(t)}}.

The following lemma says that square losses are exp concave in a bounded region.

Lemma 8.6. The function e−α(x−z)2 for α > 0 is concave in x, ∀x, z ∈ [ −1√
8α
, 1√

8α
].

For example, the above lemma means that if we assume max|yi| ≤ 1, then the square loss
function f(x) = (x− yi)2 is 1

8 -exp-concave. We can now write the following result.
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Lemma 8.7. Let y be any seq/matrix with entries bounded by 1. Suppose that ŷ are the predictions
of the SAA algorithm (with experts corresponding to dyadic intervals/rectangles) applied on top of
the running mean algorithm. Then for every dyadic interval S, we have the regret bound∑

t∈s
(ŷt − yt)2 ≤

∑
t∈s

(yt − yrunning mean,t)
2 +O(log(n)).

Proof. The proof is a direct implication of Theorem 8.4.

The following basic fact would be useful.

Lemma 8.8. Take any interval I ⊂ [n] , then I can be decomposed into log(n) many disjoint dyadic
intervals.

The above lemma yields the following result which we write as a theorem.

Theorem 8.9. [Adaptive Regret Bounds against Piecewise Constant Sequences]

Let y be any seq/matrix (d = 1, 2 respectively) with entries bounded by 1. Suppose that ŷ are
the predictions of the SAA algorithm (with experts corresponding to dyadic intervals/rectangles)
applied on top of the running mean algorithm. Then for every interval/rectangle S ⊂ [n], we have
the regret bound ∑

t∈s
(ŷt − yt)2 ≤

∑
t∈s

(yt − yS)2 +O(log(n)d+1).

Proof. Just use Lemma 8.7 alongwith Lemmas 8.8, 8.5.

We now make some remarks regarding Theorem 8.9.

Remark 8.2. Let us denote the set of all rectangular partitions of Ld,n by Pd,n,rect.

Note that we can use Theorem 8.9 to conclude

N∑
t=1

(ŷt − yt)2 ≤ inf
P∈Pd,n,rect

Approx.Error(y, P ) + |P |log(n)d+1

where Approx.Error(P ) = ‖y − yP ‖2 with yP taking the value on an entry in a given rectangle
of P equal to mean of the entries of y within that rectangle, |P | is the number of rectangles of the
partition P. This bound shows that the regret against any piecewise constant sequence is bounded
by the number of pieces of that sequence/matrix up to a log factor.

Remark 8.3. We could have used the set of all intervals/rectangles as experts instead of dyadic
ones. The only reason for using dyadic rectangles is the computational efficacy. Note the total
number of dyadic rectangles is O(N) whereas the number of all rectangles is O(N2). Moreover,
for every t ∈ Ld,n the number of dyadic rectangles containing it is (log n)d whereas it is O(N2)

for general rectangles. So the computational complexity of the SAA algorithm with all intervals as
experts is O(N3) whereas for dyadic intervals as experts is O(N(log n)d).
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Remark 8.4. We can define a stochastic version of the signal denoising problem (both when d =

1, 2) where there is a true sequence/matrix θ∗ and at every round t ∈ [T ], we wish to predict θ∗ρ(t)

by θ̂ρ(t) and then we observe a noisy version yρ(t) = θ∗ρ(t) + ερ(t). We wish to bound the MSE
1
T ‖θ̂ − θ

∗‖2. Under the assumption that the noise ε consists of bounded mean 0 i.i.d entries with
‖y‖∞ ≤ 1; the pointwise guarantee in Theorem 8.9 actually implies the MSE bound

N∑
t=1

(θ̂t − θ∗t )2 ≤ inf
P∈Pd,n,rect

Approx.Error(θ∗, P ) + |P |log(n)d+1

where θ̂ are the predictions of the SAA algorithm with dyadic intervals as experts. Note that in the
proof we use the boundedness of the data crucially. A natural question in this stochastic setting is
what if the noise is unbounded. The case of gaussian noise can be handled by incurring an extra
multiplicative log factor essentially because the max of N gaussians is O(

√
logN); see Chatterjee

and Goswami [9]. I believe that the case when the noise is heavy tailed is an open problem.

Remark 8.5. What if we want to compete with all piecewise linear sequences instead of piecewise
constant sequences? We can use the Vovk Azoury Warmuth forecaster (see the next section) as a
base algorithm and apply the SAA algorithm with experts as dyadic rectangles on top of it; this has
been done in [9] in the stochastic setting with i.i.d gaussian noise.

8.5 Vovk Azoury Warmuth Forecaster

Consider the online linear regression problem where in every round the learner observes the covari-
ate vector xt ∈ Rd; then the learner estimates a slope vector βt ∈ Rd and uses it to predict yt by
βTt xt and then observes yt and incurs the loss lt(βt) = (yt − βTt xt)2. A classical online algorithm
for this problem is the VAW forecaster Vovk [33]. Here,

β̂t = argmin
β∈Rd

t−1∑
s=1

(ys − βxs)2 + (βTxt)
2 + ‖β‖2.

We can see that β̂t is a modified version of ridge regression estimator where yt is set to be 0.

Remark 8.6. [33] argues that the above predictor is better than the usual ridge regression in
certain adversarial cases. The paper [25] argues the efficacy of the VAW forecaster as compared to
ridge regression in a stochastic setting.

Let us give a regret bound for the VAW forecaster (see, e.g., Rakhlin and Sridharan [26, pp. 38–
40] for a proof).

Proposition 8.10 (Regret bound for Vovk-Azoury-Warmuth forecaster). The VAW forecaster de-
fined above satisfies∑

t∈[T ]

(ŷt − yt)2 − inf
β∈Rd

{ ∑
t∈[T ]

(yt − β · xt)2 + ‖β‖2
}
≤ d‖y∞‖2 log(1 + T max

t∈[T ]
‖xt‖2/d).
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9 Adversarial Multi-Arm Bandits

The MAB problem is a canonical problem in sequential decision making and has a long history
going back to Thompson [32], Lai et al. [19]. Nice monographs on this area are Bubeck et al.
[7], Lattimore and Szepesvári [20], Slivkins et al. [31]. Standard application domains include
clinical trials, ad placement etc. There are two variants of the problem where one considers deter-
ministic/adversarial and stochastic losses. We will first consider the adversarial setting.

9.1 Adversarial Setting

The adversarial setting was first introduced by Auer et al. [3]. This is a limited feedback version of
the experts problem where there are K arms/actions/experts available. Let T be the total number
of rounds. At round t = 1, . . . , T :

1. Learner picks one arm at ∈ [K] and simultaneously, nature/adversary decides the loss vector
`t ∈ [0, 1]K .

2. Learner observes and incurs the loss `t(at).

The (expected) regret for this problem is defined to be

RegretA = E

[
T∑
t=1

`t(at)− inf
a∈[K]

T∑
t=1

`t(a)

]
.

Remark 9.1. We shall focus on the case of oblivious adversary. That is, the loss vector `t does
not depend on a1, . . . , at, and can be considered as being laid down before the game starts. There
are some subleties that arise when we allow for adaptive adversaries which we would not discuss
here. Note that we cannot use the Hedge algorithm directly to solve the problem, since we do not
have full information at the end of each round. Moreover, it can be shown that for any deterministic
strategy, there exists a sequence of `t such that the regret is O(T ). Thus, we will need to consider
randomized algorithms as in the full information setting.

Remark 9.2. MAB is a foundational model which exhibits the exploration exploitation tradeoff. On
the one hand, one would like to select arms that have suffered small losses in the past (exploitation),
on the other hand one would also like to select other actions to find out whether they can lead to
even smaller losses. These two desires are in conflict since one can observe the loss of only one
action per round. A good algorithm has to balance these two desires.

9.2 Exp3 Algorithm and its Regret Bound

The simplest algorithm for adversarial bandits is called Exp3, which stands for “exponential-weight
algorithm for exploration and exploitation”. The basic idea is to run the Hedge algorithm except
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that we do not observe the entire loss vector. So, we plug in an estimate l̂t of the loss vector lt and
feed it to Hedge.

Specifically, the algorithm goes as follows:

At round t ∈ [T ],

1. Plug in ˆ̀
t and run the Hedge algorithm. To be more precise, sample at ∼ pt at round t, where

pt ∝ exp

(
−η
∑
s<t

ˆ̀
s(a)

)

for some η > 0.

2. Estimate `t by
ˆ̀
t(a) =

`t(a)

pt(a)
1(a = at),

which is an unbiased estimator for `t.

Remark 9.3. Anytime an action is chosen, probability of choosing that action decreases in the next
run (because ˆ̀

t(a) = 0 for a 6= at). This encourages exploration. Of course, exploitation is also
built in the algorithm.

Theorem 9.1 (Exp3 Regret Bound). For the Exp3 algorithm, we have the following regret bound:

E

[
T∑
t=1

`t(at)− inf
a∈[K]

T∑
t=1

`t(a)

]
≤ 2
√
TK lnK.

Proof. Applying the regret bound for Hedge in Theorem 2.4 to the Exp3 algorithm, we get

T∑
t=1

pt · ˆ̀t −
T∑
t=1

ˆ̀
t(a
∗) ≤ lnK

η
+ η

T∑
t=1

K∑
a=1

pt(a) · ˆ̀2
t (a),

where a∗ denote the best action in hindsight. Note that here we used the nonnegativity of lt crucially
as the above bound only holds when ηl̂t(a) ≥ −1 which need not be true in this bandit setting if lt
is allowed to be negative.

Let us denote Ft = σ(a1, . . . , at) to be the sigma field containing all the history up to round
t. Taking expectations we see that the left-hand side becomes (recall also that ˆ̀

t is unbiased):

E
T∑
t=1

E
(
pt · ˆ̀t − ˆ̀

t(a
∗)
)
|Ft−1 = E

T∑
t=1

pt · `t − `t(a∗) =
T∑
t=1

E[`t(at)− `t(a∗)],

and similarly by using

T∑
t=1

E

[
E

[
K∑
a=1

pt(a) · ˆ̀2
t (a)

∣∣∣∣∣ Ft−1

]]
=

T∑
t=1

E

[
K∑
a=1

pt(a) · `
2
t (a)

pt(a)

]
≤

T∑
t=1

K∑
a=1

`2t (a)
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the right-hand side becomes at most
lnK

η
+ ηTK.

By optimizing the right-hand side with respect to η, we finally obtain a bound on the expected
regret:

T∑
t=1

E[`t(at)− `t(a∗)] ≤ 2
√
TK lnK.

Remark 9.4. In the Hedge analysis, the losses can take any value in [−1, 1] but here the non
negativity of the losses is crucially used.

Remark 9.5. Theorem 9.1 only gives a bound for the expected regret. High probability bound for
the regret will take more work, infact the Exp3 algorithm needs to be modified (in order to reduce
its variance) to what is called the Exp3.P algorithm; see Theorem 3.3 in [7].

9.3 Lower Bound

In this section, we will work with rewards Yi,t ∈ [0, 1] (ith arm, tth round). One can always go back
and translate everything to losses by setting 1 − Yi,t = li,t. The main result of this section is the
following.

Theorem 9.2 (Multi Arm Bandits Lower Bound). Fix any (possibly randomized) algorithm A.
There exists a universal constant C (not unreasonably large) such that the following lower bound is
true

sup
P

max
i∈[K]

E
T∑
t=1

(Yi,t − Yat,t) ≥ C
√
KT. (63)

where P refers to the joint distribution of the rewards where for each arm i, the sequence Yi,t are
i.i.d draws from a bernoulli distribution Pi independently of other arms and the expectation above
is with respect to both the randomness of the rewards and the internal randomness of the algorithm.

Remark 9.6. Note that Theorem 9.2 implies that for any (possibly randomized) algorithm A, there
exists a bad sequence of rewards on which the regret is lower bounded by O(

√
KT ).

Remark 9.7. Note that the term we are lower bounding is not the same as regret where the max
should be inside the expectation. We are bounding a smaller term which is usually called the pseudo
regret but we will abuse notation and call this regret whenever necessary.

Actually, we will show the following lemma which will immediately yield Theorem 9.2.

Lemma 9.3. For any arm i ∈ [K], let Ei denote the expectation w.r.t the joint distribution of
rewards (we call it random environment Ei)) when Pi = Bernoulli(1+ε

2 ) and all other Pj =

Bernoulli(1−ε
2 ). Then for any (possibly randomized) algorithm A, we have

max
i∈K

Ei
T∑
t=1

(Yi,t − Yat,t) ≥ C
√
KT.
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Proof of Theorem 9.2. The display in Lemma 9.3 suffices to prove Theorem 9.2. We can inter-
change sup and max in the display (63).

All that remains is to prove Lemma 9.3.

Proof of Lemma 9.3. It is enough to lower bound (max is bigger than average)

1

K

K∑
i=1

Ei
T∑
t=1

(Yi,t − Yat,t)︸ ︷︷ ︸
T ∗

.

Let us denote

Ri =

T∑
t=1

(Yi,t − Yat,t).

Then, with our notation

T ∗ =
1

K

K∑
i=1

EiRi.

Note that this Ei refers to taking expectation over both the randomness of the rewards under the
environment Ei and the internal randomness of the algorithm.

We will now proceed in steps.

1. Step 1: Reduction to Deterministic Algorithm

What is a randomized algorithm? At every round, it constructs a probability on the set of
actions and samples an action according to it. One way of thinking about this is that given
a sequence of i.i.d Uniform (0, 1) random variables U1, . . . , UT ; the algorithm uses U1 to
generate a1, then uses (a1, Y1,a1 , U2) to generate a2, then uses (a1, Y1,a1 , a2, Y2,a2) to gen-
erate a3 and so on. Importantly, the U1, . . . , UT are i.i.d U(0, 1) independent of the rewards
{Yi,t}i∈[K],t∈[T ]. With this representation of a randomized algorithm, one can see that for ev-
ery fixed realization of U1, . . . , UT , the algorithm now becomes a deterministic algorithm.
We can now write

EiRi = EU1,...,UTE{Yi,t}i∈[K],t∈[T ]∼EiRi.

Therefore, we can further write

T ∗ = EU1,...,UT

1

K

K∑
i=1

E{Yi,t}i∈[K],t∈[T ]∼EiRi.

For every fixed realization of U1, . . . , UT , lower bounding the inner average term suffices for
our purpose. Therefore, it suffices to lower bound T ∗ for every deterministic algorithm. In
the remainder of the proof we will assume that the algorithm A is deterministic.
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2. Step 2: Simplifying T ∗

Let us denote

n(i) =
T∑
t=1

I(at = i).

Then, n(i) simply counts the number of times arm i is pulled.

We can now write

Ei(Yi,t − Yat,t) = EiεI(at 6= i).

Summing the above over all the rounds give us the following expression:

T ∗ = Tε
(
1− 1

K

K∑
i=1

Ei
n(i)

T

)
. (64)

3. Step 3: Pinsker’s Inequality

Define the sequence of random variables

Ỹt = Yat,t.

Let us denote Qi to be the joint distribution of (Ỹ1, . . . , ỸT ) under the environment Ei. Let us
also define the the environment E0 to be such that all the rewards of all the arms are drawn
i.i.d from Bernoulli(1−ε

2 ). Note that since the losses are drawn from Bernoulli distributions
therefore Qi is a probability measure on the hypercube {0, 1}T .

Note that since A is deterministic, the random sequence a1, . . . , at is completely determined
by the random sequence (Ỹ1, . . . , ỸT ). Now, we can write

Ein(i)−E0n(i) =
∑

v∈{0,1}T
n(i)(v) (Qi(v)−Q0(v)) ≤ nTV (Q0, Q1) ≤ n

√
1

2
KL(Q0, Q1)

where n(i)(v) just refers to n(i) for the action sequence a1, . . . , at when the sequence (Ỹ1, . . . , ỸT )

equals v and in the last step we used Pinsker’s inequality.

4. Step 4: Computing KL Divergence

The following lemma allows us to compute the KL Divergences.

Lemma 9.4 (KL Divergence Decomposition Lemma). Let E0, E1 be two random environ-
ments where the rewards corresponding to arm a ∈ [K] are i.i.d samples from Q0,a, Q1,a

respectively, independently of other arms. Suppose the MAB algorithm is deterministic. Let
the joint distribution of (Ỹ1, . . . , ỸT ) = (Y1,a1 , . . . , YT,aT ) under the two random environ-
ments be denoted by Q0, Q1 respectively. Then, we have

KL(Q0, Q1) =
K∑
i=1

E0n(i) KL
(
Q0,i, Q1,i

)
.
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Proof of Lemma 9.4. The proof is due to the chain rule that KL divergence obeys. Specifi-
cally,

KL(P0, P1) = KL(P
(1)
0 , P

(1)
1 )+

T∑
t=2

∑
(ỹ1,...,ỹT )

P0(Ỹ1:t−1 = (ỹ1, . . . , ỹT ))KL(P
(t)
0 , P

(t)
1 |Ỹ1:t−1).

In the above, P (t)
0 , P

(t)
1 refers to the distribution of Ỹt under the random environments E0, E1.

Note that becauseA is a deterministic algorithm, at is completely determined by Ỹ1:t−1. Now
observe that for any t ∈ [T ], we have the t th term on the R.H.S above equals

K∑
a=1

P0(at = a)KL(Q0,a, Q1,a).

We now apply Lemma 9.4 in our setting and use the fact that there exists a constant c such
that

KL
(
Bernoulli(

1− ε
2

), Bernoulli(
1 + ε

2
)
)
≤ cε2

for all ε ∈ (0, 1/2).

The last display in Step 3 along with the above lets us conclude that

Ein(i) ≤ E0n(i) + n

√
1

2
E0n(i)cε2. (65)

5. Step 5: Combining Everything

We can now write due to (65) and (64),

T ∗ ≥ Tε− ε 1

K

K∑
i=1

E0n(i)︸ ︷︷ ︸
=T

−Tε
K

K∑
i=1

√
1

2
E0n(i)cε2.

Now, by Jensen’s inequality,

1

K

K∑
i=1

√
E0n(i) ≤

√√√√ 1

K

K∑
i=1

E0n(i) ≤
√
T

K
.

Therefore, we can write

T ∗ ≥ Tε
(
1− 1

K
− cε

√
T/K

)
≥
(
1/2− cε

√
T/K

)
.
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Set ε =
√
k

4c
√
T

to conclude

T ∗ ≥ Tε/4 =

√
TK

16c
.

Remark 9.8. What did we learn from the above proof? One of the hardest cases for a MAB algo-
rithm is when one of the means is slightly δ = O(

√
KT ) higher than the rest. Let’s try to intuitively

summarize the above proof. Fix an algorithm and consider the completely random environment E0

where all the arms draw from roughly fair coin flips. Under this environment, atleast one of the
arms must be pulled less than T/K times. Change the environment slightly where now we raise the
mean of this arm by δ. This change δ is small enough so that the behaviour of the algorithm does
not change much in the sense that this arm will be still not be picked atleast Ω(T ) times. In these
rounds, we will incur regret O(Tδ =

√
KT ).

9.4 Regularization by Tsallis Entropy

As we can see, we have shown an upper bound to the regret of Exp3 scaling like O(
√
K logKT )

and we have also shown a lower bound scaling like O(
√
KT ). It turns out that this logK factor

can be removed by using a different algorithm. We now present an intuitive argument motivating
this algorithm.

We have seen that the term
∑K

a=1 pt(a)l̂t(a)2 term in the regret bound of Hedge was critical
for us, in the sense that without the pt(a) weighting, the expectation of this term could be very big.
Thus, it would be even nicer if our bound was of the form

∑K
a=1 pt(a)3/2 l̂t(a)2 say as then by taking

expectation we could obtain a bound
∑K

a=1 pt(a)1/2 ≤
√
K. This would then give us an overall

regret bound 1
η logK+ηT

√
K which is better. This is not of course true for Exp3. However it turns

out that it is possible to indeed obtain the ηT
√
K term but at the cost of increasing the first 1

η logK

term to 1
η

√
K. Nevertheless, by choosing η optimally this indeed then gives me theO(

√
KT ) bound

without the log factor.

Recall that Hedge can be seen as FTRL with neg entropy regularizer. Then, it can be checked
that with ψ(p) =

∑K
i=1 p(i) log p(i), the term

∑K
a=1 pt(a)l̂t(a)2 = ‖lt‖2∇−2ψ(pt)

. Recall the nota-
tion ‖v‖2M = vTMv for a positive definite matrix M. We can think of ‖lt‖2∇−2ψ(pt)

as a local norm
term. Can we get such a local norm term if we use other regularizers? By reverse engineering, we
can check that if we define ψ(p) = −

∑K
i=1

√
p(i) then ‖lt‖2∇−2ψ(pt)

=
∑K

a=1 pt(a)3/2 l̂t(a)2 which
is precisely what we desire. The question is can we prove such a local norm bound for this type of
regularizer? The answer turns out to be yes.
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9.4.1 Tsallis Entropy

Definition 9.5. The (negative) Tsallis Entropy is a function ψ on the probability simplex Sk for
some parameter 0 < β < 1 defined as follows:

ψ(p) =
1−

∑K
a=1 p(a)β

1− β
.

We now list some properties of Tsallis Entropy.

1. Note that ψ is a convex function on the simplex just like negative Shannon entropy. So we
could indeed think of ψ as some sort of entropy.

2. Letting β → 1, by using L’ Hospital’s rule one can check that ψ converges to Shannon
entropy. So we can think of Tsallis entropy as a family of entropies parametrized by β ∈ (0, 1]

with β = 1 corresponding to Shannon entropy.

3. The function ψ is maximized at the corners with maximum value 0 and minimized at the
uniform distribution with value 1−K1−β

1−β .

4. Hessian∇2ψ(p) is a diagonal matrix with the ath diagonal entry βp(a)β−2.

9.4.2 Local Norm Bound for FTRL with Tsallis Entropy Regularizer

Lemma 9.6. Consider the following FTRL algorithm

pt = argmin
p∈Sk

〈p,
∑
s<t

l̂s〉+
1

η
ψ(p) (66)

where η > 0 is a tuning parameter, ψ is the Tsallis entropy with parameter β ∈ (0, 1), and l̂1, . . . , l̂T
are arbitrary loss vectors in RK+ . Then the following holds for any a∗ ∈ [K],

T∑
t=1

〈pt, l̂t〉−
T∑
t=1

l̂t(a
∗) ≤ 1

η
Range(ψ)+

η

2
‖l̂t‖2∇−2ψ(pt)

=
K1−β − 1

η(1− β)
+
η

2β

T∑
t=1

K∑
a=1

pt(a)2−β l̂t(a)2.

(67)

Proof. The equality in (67) follows from the maximum and minimum value of ψ and the expres-
sion for the Hessian of ψ. To derive this bound we will use the general bound for FTRL given in
Corollary 7.2. In light of this corollary, it suffices for us to show the following for every t ∈ [T ],

(pt − pt+1)T l̂t −
1

η
Dψ(pt, pt+1) ≤ η

2
‖l̂t‖2∇−2ψ(pt)

. (68)

Let’s extend the definition of ψ to the entire non-negative orthant for the subsequent discussion.
We can bound the L.H.S in (68) by
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sup
q∈Rk+
〈pt − q, l̂t〉 −

1

η
Dψ(q, pt).

Let qt be a maximizer of the above (show that it exists). Then, we can write

〈pt − qt, l̂t〉 −
1

η
Dψ(qt, pt) = 〈pt − qt, l̂t〉 −

1

2η
‖qt − pt‖∇2ψ(ξ) ≤

η

2
‖l̂t‖2∇−2ψ(ξ).

for some ξ lying between pt and qt where in the inequality we have used atb = atM1/2M−1/2b ≤
1
2η‖a‖

2
M + η

2‖b‖
2
M−1 for any positive definite matrix M and any vectors a, b and any η > 0.

It remains now to show that

‖l̂t‖2∇−2ψ(ξ) ≤ ‖l̂t‖
2
∇−2ψ(pt)

The above will follow if we can show that for all arms a and any ψ on the line segment between
pt and qt we have pt(a) ≥ pt(ψ) which will in turn follow if we can show that

pt(a) ≥ qt(a) ∀a.

Fix an arm a ∈ [K]. If qt(a) = 0 we are done. So let’s assume qt(a) > 0. Because qt is the
maximizer it should now satisfy a normal equation where we set the gradient to be 0. The normal
equation is

∇ψ(qt) = ∇ψ(pt)− ηl̂t.

Looking at the a th coordinate of the above normal equation gives

1

qt(a)1−β =
1

pt(a)1−β +
η(1− β)

β
l̂t(a).

Use l̂t(a) ≥ 0 to conclude that pt(a) ≥ qt(a).

9.4.3 Regret Bound

Theorem 9.7 (Regret Bound for Tsallis Entropy Regularized FTRL for MAB). Consider the follow-
ing MAB algorithm A, at time t, sample at ∼ pt with pt defined in (66) with l̂t(a) = lt(a)

pt(a)I(at = a)

being the inverse importance weighted estimator. The losses are assumed to be in [0, 1]. Then we
have

RegretA ≤
K1−β − 1

η(1− β)
+
ηKβT

2β
.

By setting β = 1/2 and η = 1/
√
T we obtain the minimax rate optimal regret O(

√
KT ).
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Proof. We can just take expectation of both sides in (67). The L.H.S just becomes the regret and
the R.H.S becomes

K1−β − 1

η(1− β)
+
ηKβ

β

T∑
t=1

K∑
a=1

lt(a)2pt(a)1−β.

Now just use the fact that
K∑
a=1

pt(a)1−β ≤ Kβ

and 0 ≤ lt(a) ≤ 1.

Remark 9.9. Note that we could have optimized η for any fixed β ∈ (0, 1); by setting η =

K1/2−βT−1/2 we would recover the O(
√
KT ) bound.

Remark 9.10. One needs to solve an optimization problem (can be done efficiently) every round to
compute pt, there is no closed form solution.

Remark 9.11. As a finishing remark for this section, there are analogous small variation results
and competing against best k piecewise constant strategies in the bandit setting as well. See the
bibliographic remarks at the end of Chapter 3 in [7].

10 Stochastic Multi Arm Bandits

There is a huge literature on stochastic version of the MAB problem where each arm generates
an independent sample from a certain distribution. This is clearly an easier problem than the
adversarial version, the goal here is usually to derive instance optimal bounds which could be
better than the worst case O(

√
KT ) bound. Let us denote Pa to be the probability distribution

corresponding to arm a with mean µ(a). We will assume for simplicity of exposition that PA is
supported on [0, 1] although this can be relaxed. It is more standard in the literature to control the
pseudo regret in this problem, mainly because it is natural in the stochastic setting and also is easier
to analyze. Recall that the pseudo regret (we will call it regret anyway in this section) is given by

RegretA = max
a∈[K]

E

[
T∑
t=1

`t(at)−
T∑
t=1

`t(a)

]

Let us denote a∗ = argmina∈[K] µ(a) and ∆(a) = µ(a) − µ(a∗) to be the average subop-
timality gap for arm a. Note that we can simplify the regret and write it in a couple of different
ways.

RegretA = max
a∈[K]

E

[
T∑
t=1

µ(at)−
T∑
t=1

µ(a)

]
= E

T∑
t=1

∆(at) =

T∑
t=1

∑
a∈[K]

∆(a)P (a = at) =
∑
a∈[K]

∆(a)En(a)

where n(a) is the random variable which denotes the number of times arm a is pulled.
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Remark 10.1. As before in the adversarial case, a good algorithm needs to balance exploration and
exploitation. On the one hand, the learner wants to follow the sample means and pull the minimum
one, on the other hand the sample means have to be reliable which means the learner wants to pull
each arm enough number of times.

Clearly, it is natural to base an algorithm by just looking at the running sample means of the
arms. Let us use the notation nt(a) to denote the number of times arm a is pulled in the first t
rounds and let us use µ̂t(a) =

∑t
l=1 lt(a)I(a = at) to denote the sample mean of the observations

corresponding to arm a that we have seen till round t. To that end, let us state the following lemma.

Lemma 10.1. For any stochastic MAB algorithm, the following good event G holds with probability
atleast 1− 2K

T ,

G = {|µ̂t(a)− µ(a)| ≤ 2

√
log T

nt(a)
∀t ∈ [T ], ∀a ∈ [K]}.

Proof. The proof basically relies on Hoeffding’s inequality and union bounds. There is a slight
subtle issue that one needs to take care of which is that the sample sizes nt(a) are also random. To do
this, let’s consider a random table of losses {lt(a)}a∈[K],t∈[T ] such that for each a, l1(a), . . . , lT (a)

are i.i.d draws from the distribution Pa independently of other arms. We can treat the set of all
possible such tables as the sample space for the MAB experiment in the sense that at any round t,
if a MAB algorithm pulls arm a, let it observe lnt−1(a)+1(a). Then, given a deterministic algorithm
such as UCB (defined below), the random variables a1, . . . , aT are functions of the random table
{lt(a)}a∈[K],t∈[T ].

Now we can observe that

max
a∈[K],t∈[T ]

(
|µ̂t(a)− µ(a)| − 2

√
log T

nt(a)

)
≤ max

a∈[K],m∈[T ]

(
|lt(a)1:m − µ(a)| − 2

√
log T

m

)
(69)

For any fixed m ∈ [T ] and any a ∈ [K], by Hoeffding’s inequality for all u > 0,

P (|lt(a)1:m − µ(a)| > u) ≤ 2 exp(−mu2/2).

As a consequence, we can write

P (|lt(a)1:m − µ(a)| > 2

√
log T

m
) ≤ 2

T 2
.

Take union bound over all t ∈ [T ] and all a ∈ [K] on the above display to obtain that

P ( max
a∈[K],m∈[T ]

(
|lt(a)1:m − µ(a)| − 2

√
log T

m

)
< 0) ≥ 1− 2K

T
.

Now the above display alongwith (69) finishes the proof.
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Remark 10.2. The first algorithm one might think of is to explore then exploit. This algorithm
proceeds by first sampling every arm some number of times and then sticking with the empirically
best action. A quick analysis shows that this would be suboptimal. If we want to estimate the true
mean up to error ε we would need log T/ε2 many samples. Thus, the regret for the first K log T/ε2

would be O(1) per round in the worst case. For the remaining T −K log T/ε2 rounds we will incur
at mostO(ε) regret. So, the overall regret incurred would be at most Õ(K/ε2)+Tε = Õ(T 2/3K1/3)

which is worse than
√
KT.

10.1 UCB Algorithm

The Upper Confidence Bound (UCB) algorithm is one of the canonical bandit algorithms, first
proposed by [19]. Since we consider losses instead of rewards, our algorithm will actually be LCB
but we will still call it UCB. UCB applies the principle of optimism under uncertainty.

Definition 10.2. Define

LCBt(a) = µ̂t−1(a)− 2

√
log T

nt−1(a)
.

Now, UCB plays the action

at = argmin
a∈[K]

LCBt(a).

We now make a couple of remarks.

• UCB is a deterministic algorithm in contrast to Exp3.

• When nt−1(a) = 0, we have LCBt(a) = −∞ and hence arm a is picked. This means that in
the first K rounds, every arm is picked once.

• Minimizing the first term in LCBt(a) encourages exploitation and the second term encour-
ages exploration. Interestingly, if we had minimized the upper confidence bar, then explo-
ration would not have been encouraged. So the fact that we are using the lower confidence
bar is actually critical.

We will now start the analysis of UCB which is pretty straightforward. We will bound the regret
on the good event G.

Lemma 10.3. Under the event G, UCB ensures that

∆(at) ≤ 4

√
log T

nt(at)
∀t ∈ [T ]. (70)
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Proof. We can write

∆(at) = µ(at)− µ(a∗) ≤ µ(at)− LCBt(a∗) ≤ µ(at)− LCBt(at) =

µ(at)− µ̂t−1(at) + 2

√
log T

nt(at)
≤ 4

√
log T

nt(at)

where the first inequality follows due to Lemma 10.1, the second inequality follows by defini-
tion of the UCB algorithm and the last inequality again follows due to Lemma 10.1 applied to round
t− 1.

We now give a worst case regret bound for UCB.

Theorem 10.4.
RegretUCB ≤ 8

√
KT log T + 3K.

Proof. Recall that the regret is

E
T∑
t=1

∆(at).

We can bound this as follows. On the event G using Lemma 10.3,

T∑
t=1

∆(at) =
K∑
t=1

∆(at) +
T∑

t=K+1

∆(at) ≤ K + 4
√

log T
T∑

t=K+1

1√
nt−1(at)

.

Moreover, we have

T∑
t=K+1

1√
nt−1(at)

=

T∑
t=K+1

K∑
a=1

1√
nt−1(at)

I(at = a) =

K∑
a=1

(
1 + 1/

√
2 + · · ·+ 1/

√
nT−1(a)

)
=

2

K∑
a=1

√
nT (a) ≤ 2

√
KT

where in the last equality we used the fact that
∑m

s=1 1/
√
s ≤ 2

√
m and in the last inequality we

used Jensen’s inequality.

Combining the last two displays we can write

E
T∑
t=1

∆(at)(I(G) + I(Gc)) ≤ 8
√
KT log T +K + 2K.

Remark 10.3. Note that
√
KT is the minimax optimal rate even in the adversarial setting.

We will now show an instance optimal bound. For that, we state the next lemma which bounds
the number of times an arm a is pulled by the UCB algorithm.
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Lemma 10.5. Under event G, we have

nT (a) ≤ 16 log T

∆2
a

+ 1 ∀a ∈ [K].

Proof. For each arm a, set t to be the last time that arm a is pulled. Then, by Lemma 10.3 we have

∆(a) ≤ 4

√
log T

nT (a)− 1
.

Rearranging the above display finishes the proof.

We are now ready to state the following instance optimal regret bound for UCB.

Theorem 10.6.
RegretUCB ≤ 3K + 16 log T

( ∑
a∈[K]:∆(a)>0

1

∆(a)

)
Proof. We can write

E
T∑
t=1

∆(a)E
[
nT (a)(I(G) + I(Gc))

]
≤ K + 16 log T

∑
a∈[K]:∆(a)>0

1

∆(a)
+ 2K

where the inequality is a consequence of Lemma 10.5.

Remark 10.4. In particular, if all the ∆(a) areO(1) then the regret of UCB isO(K log T ) which is
much faster than the worst case rate O(

√
KT ). On the other hand, if all the ∆(a) are O(

√
K/T )

then we get back the worst case rateO(
√
KT ). This instance bound is known to be the best instance

optimal regret bound that you can get in the stochastic MAB problem.

10.2 Some Other Remarks

• There is another algorithm called successive elimination which is similar in spirit to UCB.
In the case of two arms, this algorithm maintains confidence intervals for the two means. If
at round t, the intervals do not overlap then it plays the lower of the two arms, otherwise it
flips a fair coin to decide the arm to play. This enjoys similar regret guarantees as UCB and
is perhaps more intuitive than UCB.

• High Probability Bounds: Note that regret can be negative so simply giving an expected regret
bound may not be satisfactory. Indeed, it is important to give high probability bounds in
these settings. High probability bounds are available in the literature for the UCB algorithm;
see Audibert et al. [2].

• Heavy Tailed Bandits: The analysis we presented relied on Hoeffding’s inequality and thus
holds also for sub gaussian distributions. However, robust versions of UCB exist which work
under only a finite variance assumption; see Bubeck et al. [8]. There should also be some
quantile formulation of this problem if we want to include heavy tailed distributions such as
the Cauchy.
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• Thomson Sampling: In [32], a simple strategy was proposed for Bernoulli arms. Assume a
uniform prior for µ(a) ∈ [0, 1]. Let πa,t be the posterior distribution (a beta distribution) for
µ(a) at the tth round and let us sample θa,t ∼ πa,t independently from the past. Then define

at = argmin
a∈[K]

θa,t.

Surprisingly, a full theoretical analysis of this algorithm came only in 2010’s; see Agrawal
and Goyal [1], Russo and Van Roy [29].

• What if the arms are correlated? Does this setting make sense? For example, we could think
of the arms forming a Gaussian Process with a certain dependence structure.

11 Contextual Bandits

Contextual Bandits is an important extension of the MAB model with the following protocol:

1. The environment first decides a context xt ∈ X for some context space X and a loss
vector lt ∈ [0, 1]K specifying the loss of K actions.

2. The learner observes the context xt and then selects an action at ∈ [K].

3. The learner observes and incurs the loss lt(at).

Compared to the standard MAB problem, the only extra element here are the contexts which
are supposed to give some information about the arms/actions. Think of clinical trials where
xt corresponds to patient covariates, arms/actions are the treatments and losses measure the
response of the patient to treatment. Similarly, another application could be personalized ad
recommendation where xt correspond to user’s covariates, the arms are the ads and losses
are whether the user clicks on the ad or not.

11.1 Agnostic/Adversarial Setting

How should we define the regret here and what should be the role of the contexts? One way
to formulate the problem is as follows. We can define a policy π : X → [K] as a function
from the context space to actions. A policy is implementable in the sense that whenever I
observe context xt it tells me to play π(xt). Given some class of policies Π we can now desire
to compete against this class of policies. So for a given algorithm A we can define its regret
to be

RegretA = max
π∈Π

E

[
T∑
t=1

`t(at)−
T∑
t=1

`t(π(xt))

]
where the expectation E is with respect to the potential randomness inherent in the algorithm
A.
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Remark 11.1. Note that if we consider the set of all constant functions as my policy class Π;
each policy then corresponds to always pulling an arm a and we are back to the usual MAB
problem. In this sense, CB is a generalization of MAB. An example of a more complicated
policy class could be the following. Consider a prefixed partition of the context space X
into m subsets. We could consider piecewise constant policies, constant on each of these m
subsets. In this case, the cardinality of the policy class becomes Km which becomes large
quickly if m is large.

11.1.1 Two Natural Approaches

There are two natural approaches to solving this problem.

– One can view Contextual Bandits (CB) as a combination of several MAB problems,
one for each context xt ∈ X . In other words, one maintains a MAB algorithm for
each context and in round t, depending on the context xt one uses the MAB algorithm
corresponding to this context to select the next arm. This would not be a good strategy
if |X | is very large, as in that case the contexts wont get repeated too many times.

– Another approach is to treat each policy π ∈ Π as an expert. This then reduces the
problem to an N = |Π| armed MAB problem. Each policy π tells me to play at = π(xt)

and then we observe the loss corresponding to this policy by observing lt(π(xt)). Then
we will get O(

√
NT ) regret, which may be unacceptable if N is very large.

11.2 Exp 4 Algorithm for Adversarial Contextual Bandits

Suppose I am given a finite (possibly very large) class of policies Π with N = |Π|. The basic
idea is to consider the second approach outlined above and treat this as an MAB problem.
This means I can use the Exp3 algorithm which will give me O(

√
NT ) regret. It turns out we

can tweak this Exp3 algorithm slightly to obtain Õ(
√
KT ) regret which is much better. This

algorithm is the Exp4 algorithm proposed in Auer et al. [4].

The idea is just like in the Exp3 algorithm, we will estimate the entire loss vector lt ∈ [0, 1]N

by l̂t ∈ [0, 1]N and then compute a probability distribution on the set of policies Pt ∈ SN

defined as
Pt(π) ∝ exp(−η

∑
s<t

l̂s(π))

for a tuning parameter η > 0.

We sample a policy πt ∼ Pt and then play action at = π(xt). This is equivalent to saying
that we sample an action at ∼ pt ∈ Sk where

pt(a) =
∑

π∈Π:π(xt)=a

Pt(π).
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In words, pt is a probability distribution on the set of arms induced by the probability distri-
bution Pt on the set of policies.

So far, this is simply running the Exp3 algorithm. The main difference is how we compute l̂t.
Note that the feedback lt(at) gives the loss for not just the policy πt but also all other policies
which whould have chosen at. The usual Exp3 algorithm would set

l̂t(π) =
lt(π(xt))

Pt(π)
I(π = πt).

This would mean that the l̂t random vector would only have one non zero entry. However, it
is more natural to estimate the loss of an action instead of a policy. So, the Exp4 algorithm
sets

l̂t(π) =
lt(π(xt))

pt(π(xt))
I(at = π(xt)).

Note the pt in the denominator instead of Pt. This l̂t has potentially many more non zero
entries. Note that this l̂t is also unbiased for lt.

We can now check that the second moment is

El̂2t (π) =
l2t (π(xt))

pt(π(xt))
.

Note that if we had used the vanilla estimates l̂t then we would have Pt in the denominator
instead of pt which would have potentially increased the second moment by a lot. We now
summarize the Exp4 algorithm below.

At round t ∈ [T ],

1. Compute Pt ∈ SN such that Pt(π) ∝ exp(−η
∑

s<t l̂s(π(xs))).

2. Sample at ∼ pt ∈ SK where pt(a) =
∑

π∈Π:π(xt)=a
Pt(π).

3. Observe lt(at) and construct l̂t ∈ RN+ such that

l̂t(π) =
lt(π(xt))

pt(π(xt))
I(at = π(xt)).

We are now ready to state the main regrt bound for Exp4.

Theorem 11.1 (Regret Bound for Exp4). For any finite policy class Π with |Π| = N , the
Exp4 algorithm attains the expected regret bound

E

[
T∑
t=1

`t(at)− inf
π∈Π

T∑
t=1

`t(π(xt))

]
≤ 2
√
TK lnN.
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Proof. Similar to the Exp3 analysis, the proof starts from the local norm bound for Hedge,
which holds due to the nonnegativity of the estimated loss vectors, for any π ∈ Π,

T∑
t=1

〈Pt, l̂t〉 −
T∑
t=1

l̂t(π) ≤ logN

η
+

T∑
t=1

∑
π∈Π

Pt(π)l̂2t (π).

As in the Exp3 proof, by unbiasedness of l̂t, the L.H.S above just becomes the regret against
the policy π after taking expectation. Taking expectation for the local norm term on the R.H.S
gives

E
∑
π∈Π

Pt(π)l̂2t (π) ≤
∑
π∈Π

Pt(π)

pt(π(xt))
=
∑
a∈[K]

∑
π∈Π:π(xt)=a

Pt(π)

pt(a)
= K.

Therefore, we get a bound of logN
η + ηTK which give us the O(

√
KT logN) bound after

optimizing over η.

Remark 11.2. Note that the computational complexity of Exp4 is O(N). In cases when N
is too large and we cannot afford to search over all policies, we would need to make some
assumptions about the loss generating process such as the losses are stochastic with means
that are nice functions of the context. This is what we describe next.

11.3 Realizable Setting

We will now consider the stochastic setting where arm a draws losses (independently of the
past) i.i.d from a probability distribution Pa(x) when the context is x. Let F be a function
class consisting of functions X × [K] → [0, 1]. We will assume that there exists a function
f∗ ∈ F such that the mean of Pa(x) = f∗(x, a), in other words, Elt(x, a) = f∗(x, a). This
is called the realizable setting in the literature. For example, F could represent K functions
from a given function class such as Linear functions, Holder Smooth functions, Shape Con-
strained function classes such as monotonicity and convexity, large function classes such as
neural networks with a lot of parameters.

In this setting, the natural class of policies is indexed by functions in F . That is,

Π = {πf : f ∈ F}

where the policy πf is defined as

πf (x) = argmin
a∈[K]

f(x, a).
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In this realizable setting we can write the regret of an algorithm as

RegretA = max
π∈Π

E

[
T∑
t=1

`t(at)−
T∑
t=1

`t(π(xt))

]
= E

T∑
t=1

(
f∗(xt, at)− f∗(xt, πf∗(xt))

)
.

(71)

Remark 11.3. One possible approach in the realizable setting is to use a functional version of
UCB or successive elimination. This will require us to build confidence bands for the under-
lying mean functions which are valid with high probability. Constructing confidence bands
for nonparametric function classes is a hard problem. There exists methods for construct-
ing confidence bands for Holder Smooth Functions and this can likely be used to construct
CB algorithms for this function class. We also took this approach for the class of univariate
isotonic function class; see Chatterjee and Sen [10]. However, this approach seems hard to
generalize to other nonparametric function classes. Although, it must be said that confidence
bands which are valid for most parts of the context space X should be sufficient for the CB
problem and this could be doable for other nonparametric function classes.

11.4 SquareCB Algorithm

This algorithm was proposed in Foster and Rakhlin [12]. The goal of this section is to explain
the essential idea behind this algorithm. The main message here is to say that one can reduce
the contextual bandits problem to online regression.

11.4.1 Online Regression Oracle

Given a function class F consisting of functions X × [K]→ [0, 1], the learner has access to
an oracle that solves the following problem:

1. The environment decides zt ∈ X × [K].

2. The oracle Osq predicts ŷt ∈ [0, 1].

3. The environment reveals yt ∈ [0, 1].

The oracle Osq can attain (for any possibly adaptively chosen) sequence z1:T and y1:T , the
following regret bound

T∑
t=1

(ŷt − yt)2 −min
f∈F

(f(zt)− yt)2 ≤ R(T ) (72)

where R(T ) is a o(T ) sequence.

This problem is open to the best of my knowledge for many nonparametric function classes.
Indeed, this requirement on the oracle may be too strong for some function classes. For
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example, in the case of univariate isotonic functions, online regression with sublinear regret
would not be possible when the contexts are arbitrary; see [17], [18]. However, assuming a
mild requirement on the context sequence such as they cover the entire context space could
again make this problem viable for general nonparametric function classes.

In some simple cases we can give example of such an oracle.

– When F is finite, this reduces to an expert problem. In this case, due to exp concavity
of the square loss, one can show that Hedge can attain R(T ) = O(log |F |) which is a
T independent rate.

– When F consists of K linear functions with the slopes β1, . . . , βk all with at most unit
euclidean norm and X is the unit euclidean ball in Rd, then one can check that by run-
ning K separate OGD’s one can obtain a dimension independent regret bound R(T ) =√
TK or we can run K separate VAW forecasters to obtain R(T ) = O(kd log T ).

11.4.2 Motivating the Algorithm

Consider the following algorithmic framework. At time t, given context xt, ask the oracle
Osq to predict the loss for each of the K arms; denote them by ŷt(1), . . . , ŷt(K). Then, based
on these predictions, come up with a probability distribution over the arms pt ∈ SK , sample
at ∼ pt, observe lt(at) and then feed the instance zt = (xt, at) and yt = lt(at) to the oracle.
The main question that arises is how to choose pt?

Note that this algorithm is a randomized algorithm and the next point zt = (xt, yt) is chosen
based on the past history and hence we truly require (72) to hold for any adaptively chosen
sequence z1:T and y1:T .

What does (72) give us in this setting? We can simplify the expected (pseudo) regret of the
oracle as follows:

max
f∈F

E
T∑
t=1

(ŷt(at)− lt(at))2 −
T∑
t=1

(lt(at)− f(xt, at))
2 =

E
T∑
t=1

(ŷt(at)− lt(at))2 −
T∑
t=1

(lt(at)− f∗(xt, at))2 =

E
T∑
t=1

(
ŷt(at)− f∗(xt, at)

)(
ŷt(at) + f∗(xt, at)− 2lt(at)

)
=

E
T∑
t=1

(
ŷt(at)− f∗(xt, at)

)2
=

E
T∑
t=1

K∑
a=1

pt(a)
(
ŷt(a)− f∗(xt, a)

)2
.

84



Therefore, the assumed pointwise regret bound of the oracle ensures that with our algorithmic
framework (with whatever choice of pt), the expected pseudo regret of the oracle

E
T∑
t=1

K∑
a=1

pt(a)
(
ŷt(a)− f∗(xt, a)

)2
︸ ︷︷ ︸

T2

≤ R(T ). (73)

Coming back to the CB problem in the realizable setting recall that (71) we can write the
expected regret and simplify it as follows:

E
T∑
t=1

(
f∗(xt, at)− f∗(xt, πf∗(xt))

)
= E

T∑
t=1

K∑
a=1

pt(a)
(
f∗(xt, a)− f∗(xt, πf∗(xt)

)
︸ ︷︷ ︸

T1

. (74)

So far, we have still not shed light on how to choose pt. Now we start indicating how pt can
be chosen. Note that we want to bound T1 but what we have is a bound on T2. So it is natural
to want to bound T1 by T2. Perhaps what we want is to show is an inequality of the form

T1 ≤
γ

4
T2 +Rem (75)

where γ/4 stands for some constant and Rem stands for remainder which we would like to
make as small as possible.

To establish (75), it suffices to establish the analogous inequality for any fixed t ∈ [T ]. So let
us fix t ∈ [T ] and let us denote f∗(xt, a) by µ(a). Then the tth term in T2 can be written as
pTt (ŷt − µ)2 and the tth term in T1 can be written as pTt (µ− µ(a∗)1).

So it would suffice for us to show an inequality of the form

pTt (µ− µ(a∗)1) ≤ γ

4
pTt (ŷt − µ)2 +Rem (76)

and find an expression for the Rem term.

To this end, let us define the optimization problem

OPT (ŷt) = inf
p∈SK

max
a∗∈[K]

sup
µ∈RK

pT (µ− µ(a∗)1)− γ

4
pT (ŷt − µ)2

Observe that if we define pt to be the argmin of the above optimization problem then (76)
holds with Rem = OPT (ŷt). Amazingly enough, the value of OPT (ŷt) turns out to be
small enough for our purposes and does not depend on ŷt. This is the content of the next
lemma.
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Lemma 11.2. For any ŷ ∈ RK , we have OPT (ŷ) = K−1
γ and the corresponding minimizer

p∗ can be expressed as

p∗(a) =
1

γ
(
ŷ(a) + λ

)
where λ is the positive number that makes p∗ a valid probability vector. This λ can be effi-
ciently computed by binary search.

Proof. We can rewrite

OPT (ŷ) = inf
p∈SK

max
a∗∈[K]

sup
µ∈RK

(p− ea∗)Tµ−
γ

4
pT (ŷ − µ)2.

Let us first fix p and a∗ and look at the innermost maximization over µ. This is a quadratic
problem in µ and hence we can easily find the maximizer by setting the gradient to zero. A
little bit of calculation will then give us

OPT (ŷ) = inf
p∈SK

max
a∗∈[K]

1

γ

( 1

p(a∗)
− 1
)

+ (p− ea∗)T ŷ.

To solve this minmax problem, first let us observe that for any fixed p:

max
a∗∈[K]

1

γ

( 1

p(a∗)
− 1
)

+ (p− ea∗)T ŷ ≥
1

γ

K∑
a=1

p(a)
( 1

p(a)
− 1
)

=
K − 1

γ

where we obtained the inequality by taking expectation when a∗ ∼ p. The above therefore
gives us a lower bound forOPT (ŷ). On the other hand, setting p such that 1

γ

(
1

p(a)−1
)

+(p−
ea)

T ŷ is the same for all a will give us an equality in the previous display thereby asserting
that indeed OPT (ŷ) = K−1

γ .

Therefore, an optimal p should satisfy that (by only considering the terms that depend on a)

1

γ

( 1

p(a)
)− ŷ(a)

is the same for all a ∈ [K] which then yields the expression for p∗. Note that because
ŷ(a) ∈ [0, 1] for all a ∈ [K], a λ ≥ 0 will exist which makes p∗ a valid probability vector.
Moreover, we can start with a really large candidate value of λ which will clearly make the
sum of the entries of p∗ smaller than 1, and then find the correct λ by binary search. So
computing the value of λ is an easy problem.

Actually the paper [12] proposes a slightly different choice of pt which can be thought of
as an approximate minimizer of the optimization problem. This is made precise in the next
lemma.
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Lemma 11.3. Let
b = argmin

a∈[K]
ŷt(a).

Then define for all a 6= b,

pt(a) =
1

γ
(
ŷ(a)− ŷ(b) +K

) .
Of course, pt(b) = 1−

∑
a6=b pt(a). Then, we have

max
a∗∈[K]

sup
µ∈RK

pTt (µ− µ(a∗)1)− γ

4
pTt (ŷt − µ)2 ≤ 2

K − 1

γ
.

Proof. As in the proof of the previous lemma, it suffices to consider the following term for
any a∗ ∈ [K],

1

γ

( 1

p(a∗)
− 1
)

+ (p− ea∗)T ŷ

where p = pt.

Let’s look at the second term first. We can write this term as∑
a∈[K]

p(a)ŷ(a)− ŷ(a∗) =
∑
a6=a∗

p(a)
(
ŷ(a)− ŷ(a∗)

)
=

∑
a6=a∗

p(a)
(
ŷ(a)− ŷ(b)

)
+
∑
a6=a∗

p(a)
(
ŷ(b)− ŷ(a∗)

)
=

∑
a6=a∗

p(a)
(
ŷ(a)− ŷ(b)

)
+ (1− p(a∗))

(
ŷ(b)− ŷ(a∗)

)
=

∑
a∈[K]

p(a)
(
ŷ(a)− ŷ(b)

)
+
(
ŷ(b)− ŷ(a∗)

)
≤ K − 1

γ
+
(
ŷ(b)− ŷ(a∗)

)
where in the last expression we used the definition of pt.

Therefore, we can write

1

γ

( 1

p(a∗)
− 1
)

+ (p− ea∗)T ŷ ≤
1

γ

( 1

p(a∗)
− 1
)

+
K − 1

γ
+
(
ŷ(b)− ŷ(a∗)

)
.

When a∗ 6= b, by plugging in the expression for pt(a∗) we get 2K−1
γ . When a∗ = b, use

pt(b) ≥ 1
K to again obtain that the above expression is at most 2K−1

γ .

11.4.3 SquareCB Algorithm and its Regret Bound

We now summarize the SquareCB algorithm.

Input: Online Regression Oracle Osq and parameter γ > 0. For t = 1, . . . , T do

1. Receive context xt.
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2. Ask OracleOsq to predict the loss for each of theK arms; denote them by ŷt(1), . . . , ŷt(K).

3. Compute pt such that

– Option 1:

pt(a) =
1

γ
(
ŷ(a) + λ

)
where λ is found via binary search.

– Option 2: Let
b = argmin

a∈[K]
ŷt(a).

Then define for all a 6= b,

pt(a) =
1

γ
(
ŷ(a)− ŷ(b) +K

)
and pt(b) = 1−

∑
a6=b pt(a).

4. Sample at ∼ pt, observe lt(at) and feed (zt, yt) = ((xt, at), lt(at)) to the Oracle Osq.

Theorem 11.4. Under the realizable setting, the SquareCB algorithm defined above satisfies
a regret bound = O(γR(T ) + TK

γ ) = O(
√
TR(T )K) after optimizing over γ.

Proof. The proof is immediate from our previous discussions.

Let us now make some remarks regarding the SquareCB algorithm.

– Note that since the CB problem in the realizable setting is a generalization of the
stochastic MAB problem, the SquareCB algorithm gives an alternative algorithm for
the usual stochastic MAB problem as well. What is interesting about this algorithm is
that this bypasses the need to do inference or maintain confidence intervals. So in the
usual MAB problem, the oracle would just predict based on the point estimates which
are the running means of the arms and not construct confidence intervals. For gen-
eral nonparametric function classes, constructing confidence bands may be harder than
actually coming up with an online regression oracle or atleast that is the hope.

– Can a version of this algorithm be developed which works for heavy tailed noise? This
seems an open problem.

– Do we need the full power of the assumption (72)? In the paper [12], a simpler assump-
tion (tailored towards realizability) is given which suffices for the analysis of SquareCB
to go through. This is the slightly weaker requirement that for every (possibly adaptively
chosen) sequence {(xt, at)Tt=1}, we have

T∑
t=1

(ŷt − f∗(xt, at))2 ≤ R(T ).
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